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1 Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, 09210-170,
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Abstract
In this paper we evince a rigorous formulation of duality in gravitational
theories where an Einstein-like equation is valid, by providing the conditions
under which �

g
T α and �

g
Rα

β may be considered as the torsion and curvature

2-forms associated with a connection D′, part of a Riemann–Cartan structure
(M, g′,D′), in the cases g′ = g and g′ �= g, once T α and Rα

β are the torsion and
curvature 2-forms associated with a connection D part of a Riemann–Cartan
structure (M, g,D). A new form for the Einstein equation involving the dual
of the Riemann tensor of D is also provided, and the result is compared with
others appearing in the literature.

PACS numbers: 02.40.−k, 04.50.Kd
Mathematics Subject Classification: 15A66, 83C99

1. Introduction

There have been a number of papers trying to provide evidence of a possible analogy between
electromagnetism and gravitation, in order to elicit a gravitational analog for the magnetic
monopole that appears in the generalized Maxwell equations with magnetic and electric
currents3. Some of these earlier papers are in4 [10, 19, 20]. Ten years ago Nieto [21] developed
an analog of S-duality5 for linearized gravity in (3 + 1) dimensions (see also [14, 15, 22])

3 In such theory, see, e.g., [17, 29] which uses two potentials, the electric and magnetic currents are phenomenological,
i.e. the magnetic current is not a result of a U(1) gauge theory formulated in a nontrivial base spacetime. So, in the
theory which uses two potentials there are no Dirac strings at all. Unfortunately, this result is sometimes overlooked
in presentations of the monopole theory and in the proposed gravitational analogies of that concept.
4 One of the motivations of [10] was eventually to obtain a quantization of mass.
5 Duality and S-duality have been also studied extensively in non-Abelian gauge theories, see, e.g. [18, 24, 31] and
references therein.
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and generalizations of that idea of duality for gravitational theories in more dimensions appear,
e.g., in [1–3, 5–7, 12, 13]. In particular for the case of gravity in (3 + 1) dimensions, a set
of equations have been proposed for Einstein equations, Bianchi identities and their duals,
although mainly used in the linear approximation.

The main aim of this note is to derive exact equations that must be satisfied by the
dual Einstein equations and for the duals of the torsion and curvature 2-forms of a general
Riemann–Cartan structure (M, g,D). We study in which conditions the dualized objects
realize a Riemann–Cartan structure (M, g,D′), or even a (M, g′,D′) one. In doing so we
find that the correct field equations for a dual theory (in a precise mathematical sense defined
below) are at variance with ones proposed in some of the above mentioned papers. In doing
so we hope that the present note be useful for those pursuing the interesting ideas of duality
in gravitational theories.

The paper, which uses an intrinsic formulation of the theories presented, is organized as
follows. In section 2 we present some necessary preliminaries that serve, besides the proposal
of introducing our notation, also for the purpose of presenting what it is understood here by a
Riemann–Cartan gravitational theory. In this section we also review the Bianchi identities for
the torsion and curvature 2-forms T α and Rα

β of (M, g,D) in intrinsic and component forms,
because those formulas for a Riemann–Cartan theory are not well known as they deserve to
be, and sometimes concealed from the formalism. In section 3 we introduce the Ricci 1-form
fields Rμ and the Einstein 1-forms fields Gμ [27], and further prove a proposition containing
a formula that relates the dual �

g
Rμ of Rμ to a sum, involving the dual of the Riemann tensor

and an important formula for the dual �
g
Gμ of Gμ, that permits us to write Einstein equations

in a suggestive way concerning duality structures. In section 4 we provide the correct dual
of Einstein equation in Riemann–Cartan theory. In section 5 we delve into the formalism
under which conditions �

g
T α and �

g
Rα

β may be considered as the torsion and curvature 2-forms

associated with a connection D′ part of a Riemann–Cartan structure (M, g,D′). Our result
is then compared in section 6 with the ones, e.g., in [1], which are then commented and
analyzed in the present context. In section 7 we study the same problem as in section 5 but
this time asking the conditions under which �

g
T α and �

g
Rα

β may be considered as the torsion

and curvature 2-forms associated with a connection D′ part of a Riemann–Cartan structure
(M, g′,D′) with g′ �= g. In section 8 we present our conclusions. The paper contains some
appendices reviewing the definition of the exterior covariant derivative of indexed form fields,
the decomposition of the Riemann and Ricci tensors of a general Riemann–Cartan structure
(M, g,D), together with their respective similars for a Lorentzian structure (M, g̊, D̊), needed
to perceive some statements in the main text. There is also an appendix containing a collection
of identities involving the contraction of differential forms and Hodge duals used in the
derivations hereon.

2. Some necessary preliminaries

We start this section by recalling some germane facts concerning the Riemann–Cartan
structures and a particular and outstanding case of those structures, the Lorentzian one,
which serves for the purpose of fixing our notations, besides other relevant properties
and prominent applications. In what follows a general Riemann–Cartan structure will be
denoted by (M, g,D). Here M is a four-dimensional Hausdorff, paracompact, connected
and noncompact manifold, g ∈ sec T 0

2 M a metric tensor field of signature (1, 3), D is an
affine connection [8, 9, 11] on M. Also the connection D is metric compatible, i.e. Dg = 0

2
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and, moreover, for a general Riemann–Cartan structure the torsion and curvature tensors6 of
D—denoted by T and R—are non null. When T = 0 and R �= 0, a Riemann–Cartan structure
is called a Lorentzian structure and will be denoted by (M, g, D̊).7 When R = 0 a Lorentzian
structure is called the Minkowski structure. To present the definition of T and R, and the
conventions used in this paper, first the torsion and curvature operations are introduced.

Definition 1. Let u, v ∈ sec T M . The torsion and curvature operations of a given affine
connection [9] D are respectively the mappings: τ : sec T M ⊗ sec T M → sec T M and
ρ : sec T M ⊗ sec T M → End(sec T M) given by

τ(u, v) = Duv − Dvu − [u, v], (1)

ρ(u, v) = DuDv − DvDu − D[u,v]. (2)

Definition 2. Let u, v, w ∈ sec T M and α ∈ sec �1T ∗M . The torsion and curvature tensors
of an affine connection D are the mappings [8, 9, 11] T : sec(�1T ∗M⊗T M⊗T M) → F(M)

and R : sec(T M ⊗ �1T ∗M ⊗ T M ⊗ T M) → F(M) given by

T (α, u, v) = α(τ(u, v)), (3)

R(w, α, u, v) = α(ρ(u, v)w), (4)

where F(M) is the set of functions on M.

Given an arbitrary moving frame {eα} on T M , let {θρ} be the dual frame of {eα} (i.e.
θρ(eα) = δρ

α ). Let also {eα} be the reciprocal basis of {eβ}, i.e., g(eα, eβ) = δα
β and let {θα} be

the reciprocal basis of {θρ}, i.e., θα(eβ) = δβ
α . We write

[eα, eβ] = c
ρ
αβeρ, Deα

eβ = L
ρ
αβeρ, (5)

where c
ρ
αβ are the structure coefficients of the frame {eα} and L

ρ
αβ are the connection coefficients

in this frame. Then, the components of the torsion and curvature tensors are given, respectively,
by

T (θα, eα, eβ) = T
ρ
αβ = L

ρ
αβ − L

ρ
βα − c

ρ
αβ

R(eμ, θα, eα, eβ) = Rμ
ρ
αβ = eα

(
L

ρ
βμ

) − eβ

(
Lρ

αμ

)
+ Lρ

ασLσ
βμ − L

ρ
βσLσ

αμ − cσ
αβLρ

σμ.
(6)

We can easily verify that defining

Rμναβ := gμρRμ
ρ
αβ (7)

it follows that

Rμναβ = Rνμαβ = Rμνβα. (8)

Remark 3. When the torsion tensor of D is null, besides the symmetries given in
equation (8), the symmetry

Rμναβ = Rβαμν (9)

also holds.

6 For the conventions used for those tensors in this paper see the appendix.
7 The connection satisfying D̊g = 0 and T = 0 is unique and is called the Lévi-Cività connection of g.
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Now, taking into account equation (8) we introduce also a ‘physically equivalent’ Riemann
tensor R by

R = 1
4Rμναβθμ ∧ θν ⊗ θα ∧ θβ = 1

4Rμν
αβθμ ∧ θν ⊗ θα ∧ θβ

= 1
4R αβ

μν θμ ∧ θν ⊗ θα ∧ θβ. (10)

In addition,

dθρ = − 1
2c

ρ
αβθα ∧ θβ, Deα

θρ = −L
ρ
αβθβ (11)

where ω
ρ
β ∈ sec �1T ∗M given by

ω
ρ
β = L

ρ
αβθα, (12)

are the so-called connection 1-forms [8, 11] relative to the cobasis {θα}. Moreover, the
T ρ ∈ sec �2T ∗M are the torsion 2-forms and the Rρ

β ∈ sec �2T ∗M are the curvature 2-forms
[8, 11], given respectively by

T ρ = 1
2T

ρ
αβθα ∧ θβ, Rρ

μ = 1
2Rμ

ρ
αβθα ∧ θβ. (13)

Multiplying equations (6) by 1
2θα ∧ θβ and using equations (11) and (13), Cartan’s structure

equations are derived:

T ρ = dθρ + ω
ρ
β ∧ θβ, Rρ

μ = dωρ
μ + ω

ρ
β ∧ ωβ

μ. (14)

Definition 4. A Riemann–Cartan spacetime is a pentuple (M, g,D, τg,↑) where (M, g,D) is
a Riemann–Cartan structure, and we suppose the existence of a global τg ∈ sec �4T ∗M (which
as well known defines an orientation for M). Moreover, ↑ denotes that the Riemann–Cartan
structure is time oriented. See, e.g., [25, 27] for details.

Pentuples (M, g,D, τg,↑) represent gravitational fields in the so-called Riemann–Cartan
theories. In the theory presented, e.g., in [16], the equations of motion are the Einstein
equation,

G = T, (15)

where G ∈ sec T 0
2 M is the Einstein tensor, T ∈ sec T 0

2 M is the canonical energy–momentum
tensor of the matter fields, and the algebraic identity

Υαβ = Jαβ, (16)

where the Υαβ ∈ sec �1T ∗M are such that their components are the so-called modified torsion
tensor components, and the �

g
Jαβ ∈ sec �3T ∗M are the spin angular momentum densities of

the matter fields8. Also, the symbol �
g

denotes the Hodge star operator associated with the

metric g.

Remark 5. It is crucial to observe that for a general Riemann–Cartan structure, G =
Gμνθ

μ ⊗ θν and T = Tμνθ
μ ⊗ θν are not symmetric, i.e. Gμν �= Gνμ and Tμν �= Tνμ. We

recall that

Gμν = Rμν − 1
2gμνR, (17)

8 The components of Jαβ ∈ sec �1T ∗M are the standard (field theory) canonical spin angular momentum of the
matter fields. In the Riemann–Cartan theory of [16], since equation (16) is an algebraic identity, it is possible to
eliminate completely the torsion tensor from the theory and to write an Einstein equation involving the Einstein tensor
of the Lévi-Cività connection of g (using the decomposition presented in appendix B) and a metric energy–momentum
tensor that is equivalent to the Belinfante symmetrization of the canonical energy–momentum tensor of the theory.
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where Rμν are the components of the Ricci tensor (which, as Gμν are not symmetric)

Ricci = Rμνθ
μ ⊗ θν := Rμ

ρ
ρνθ

μ ⊗ θν, (18)

and R = gμνRμ
ρ
ρν is the curvature scalar.

It is also well known that in GRT a gravitational field generated by a given matter
distribution (represented by a given energy–momentum tensor T̊ ∈ sec T 0

2 M) is represented
by a pentuple (M, g̊, D̊, τg̊,↑)9 and the equation of motion (Einstein equation) is given by

G̊ = T̊ (19)

and in this case the tensors G̊ and T̊ are symmetric.

Remark 6. In the appendix we review how to write the Riemann curvature tensor (respectively
the Einstein tensor) of a Riemann–Cartan structure (M, g,D) in terms of the Riemann
curvature tensor (respectively the Einstein tensor) of a Lorentzian structure (M, g̊, D̊). Those
results are important for a proper understanding of this paper.

2.1. The Bianchi identities

Given a general Riemann–Cartan structure (M, g,D) we have the following identities:

DT α = Rα
β ∧ θβ, (20)

DRα
β = 0, (21)

known respectively as the first and second Bianchi identities (see, e.g., [8, 27]). In the above
equations, D is the exterior covariant derivative of indexed form fields [4, 27], whose precise
definition is recalled in appendix A. Now, the coordinate expressions of equations (20) and
(21) can be easily found and are respectively [8, 28] written as∑

(μαβ)

Rμ
ρ

αβ =
∑
(μαβ)

(
DμT

ρ
αβ − T κ

μβT ρ
κα

)
, (22)

∑
(μνρ)

DμR α
β νρ =

∑
(μνρ)

T κ
νμR α

β κρ, (23)

where
∑

(μνρ) denotes (as usual) the cyclic sum. For future use we observe that

Rα
β ∧ θβ = 1

3!

(
Rμ

α
αβ + Rα

α
βμ + Rβ

α
μα

)
θμ ∧ θα ∧ θβ. (24)

Remark 7. For a Lorentz structure (M, g̊, D̊) the Bianchi identities reduce to

R̊α
β ∧ θβ = 0, DR̊α

β = 0,

or in components:∑
(μαβ)

Rμ
ρ

αβ = 0,
∑
(μνρ)

DμR α
β νρ = 0.

9 In fact a gravitational field is defined by an equivalence class of pentuples, where (M, g, D, τg,↑) and
(M ′, g′, D′, τ ′

g, ↑′) are said to be equivalent if there is a diffeomorphism h : M → M ′, such that g′ = h∗g,
D′ = h∗D, τ ′

g = h∗τg, ↑′= h∗ ↑, (where h∗ here denotes the pullback mapping). For more details, see, e.g.,
[25, 27]. With the above definition we exclude from our considerations models with closed timelike curves, which
according to our view are pure science fiction.

5
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3. Ricci and Einstein 1-form fields

Given Rμν and Gμν , respectively the components of the Ricci and Einstein tensors (in the
general basis introduced above) we define the Ricci (Rμ ∈ sec �1T ∗M) and the Einstein
(Gμ ∈ sec �1T ∗M) 1-form fields by10

Rμ := Rμ
νθ

ν, Gμ := Gμ
νθ

ν.

For future use we introduce also the energy–momentum 1-form fields Tμ ∈ sec �1T ∗M by

Tμ := T μ
ν θν. (25)

Also

�
g

Tμ = T μ
ν �

g
θν

= 1

3!

(
T μ

ν

√
|det g|gνκεκιλσ

)
θ ι ∧ θκ ∧ θσ . (26)

Proposition 8. 11The dual of the Ricci and Einstein 1-form fields, i.e. �
g
Rα ∈ sec �3T ∗M

and �
g
Gα ∈ sec �3T ∗M, can be written as

�
g
Rα = − �

g
Rα

β ∧ θβ = −θβ ∧ �
g
Rα

β, (27)

�
g
Gρ = − 1

2Rαβ ∧ �
g
(θα ∧ θβ ∧ θρ). (28)

where Rρ
μ = 1

2Rμ
ρ
αβθα ∧ θβ and Rμρ := 1

2Rμραβθα ∧ θβ .

Proof. Using some of the identities in appendix C we can write immediately

θρ ∧ �
g
Rμρ = − �

g
(θρ�

g
Rμρ)

= − �
g

1
2 [Rμραβθρ�

g
(θα ∧ θβ)] = − �

g
(Rμραβgραθβ)

= − �
g

(
R α

μ αβθβ
) = − � (Rμβθβ)

= − �
g
Rμ,

and equation (27) is proved.
Now equation (28) is evinced. By taking some of the identities in appendix C, we can

immediately write
1
2Rαβ ∧ �

g
(θα ∧ θβ ∧ θρ) = − 1

2 �
g

[Rαβ�
g
(θα ∧ θβ ∧ θρ)]

= − 1
4Rαβικ �

g
[(θ ι ∧ θκ)�

g
(θα ∧ θβ ∧ θρ)]

= − 1
4Rαβικ �

g
[(θ ι�

g
(θκ�

g
(θα ∧ θβ ∧ θρ))]

= − �
g

(
Rρ − 1

2Rθρ
)
,

and equation (28) is proved. �
10 To the best of our knowledge the dual of the Ricci and Einstein 1-form fields first appear in [30]. See also [4, 11].
11 Proofs of this proposition can also be found, e.g. [4, 11, 30]. The proof here seems a very simple one and it is given
here for completeness of our exposition and benefit of the reader. Also in [26], using the Clifford bundle operator,
it has been identified that the Ricci 1-forms can be obtained by application of the Ricci operator ∂ ∧ ∂ to the 1-form
fields θα , i.e. (∂ ∧ ∂)θα = Rα . Here ∂ = θκ D̊eκ is the Dirac operator [23] acting on sections of the Clifford bundle.

6



J. Phys. A: Math. Theor. 43 (2010) 205206 R da Rocha and W A Rodrigues Jr

Remark 9. Recall that

�
g
Rμρ := 1

2Rμραβ �
g
(θα ∧ θβ)

= 1
2Rμραβ

1
2

√
|det g|gακgβιεκιλσ θλ ∧ θσ = 1

2

(
1
2

√
|det g|εκιλσR κι

μρ

)
θλ ∧ θσ

= 1
2 R�

μρλσ θλ ∧ θσ

= 1
2R�

μρλσ

√
|det g|θλ ∧ θσ , (29)

with

R�
μρλσ := 1

2

√
|det g|εκιλσRκι

αβ, and R�
μρλσ := 1

2εκιλσRκι
αβ, (30)

and so it follows that

�Rμρ ∧ θρ = 1
2 R�

μρλσ θλ ∧ θσ ∧ θρ = 1
2 R�

μρλσ θρ ∧ θλ ∧ θσ

= 1
2

(
1
3 R�

μρλσ θρ ∧ θλ ∧ θσ + 1
3 R�

μλσρθ
λ ∧ θσ ∧ θρ + 1

3 R�
μσρλθ

σ ∧ θρ ∧ θλ
)

(31)

= 1
3!

(
R�

μρλσ + R�
μλσρ + R�

μσρλ

)
θρ ∧ θλ ∧ θσ

= 1
3!

(
R�

μρλσ + R�
μλσρ + R�

μσρλ

)√
|det g|θρ ∧ θλ ∧ θσ , (32)

and taking into account equation (27) it reads

�
g
Rμ = − 1

3!

(
R�

μρλσ + R�
μλσρ + R�

μσρλ

) √
|det g|θρ ∧ θλ ∧ θσ . (33)

4. The dual of Einstein equation in Riemann–Cartan theory

We now return to equation (15) which in components can read12

Rμν − 1
2gμνR = Tμν. (34)

Multiplying this equation on both sides by θν and recalling the definitions of the Ricci, Einstein,
and the energy–momentum 1-form fields given above we have

Gμ = Tμ. (35)

Taking the dual of this equation we obtain

�
g
Gμ = �

g
Rμ − 1

2R �
g
θμ = �

g
Tμ (36)

Taking equations (33) and (26) into account, equation (36) can be expressed as

− 1
3!

(
R�

μρλσ + R�
μλσρ + R�

μσρλ + 1
2Rδκ

μεκρλσ

)√
|det g|θρ ∧ θλ ∧ θσ

= 1
3! (Tμνg

νκεκρλσ )
√

|det g|θρ ∧ θλ ∧ θσ ,

or equivalently (
R�

μρλσ + R�
μλσρ + R�

μσρλ + 1
2Rεμρλσ

) = ερλσκT
κ

μ . (37)

12 Note that in equation (34) Rμν and Tμν are not symmetric.

7
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4.1. The field and structure equations

We now summarize the field and Bianchi identities for a Riemann–Cartan theory where an
Einstein-like equation holds. Those equations can be written conveniently in intrinsic and
component forms respectively as

�
g
Gμ = �

g
Rμ − 1

2
R �

g
θμ = �

g
Tμ (38)

DT α = Rα
β ∧ θβ, (39)

DRα
β = 0, (40)(

R�
μρλσ + R�

μλσρ + R�
μσρλ +

1

2
Rεμρλσ

)
= ερλσκT

κ
μ ⇔ Gμν = Tμν, (41)

∑
(μαβ)

Rμραβ =
∑
(μαβ)

(
DμTραβ − T κ

μβTρκα

)
, (42)

∑
(μνρ)

DμRβανρ =
∑
(μνρ)

T κ
νμRβακρ. (43)

In a GRT model it follows that(
R̊�

μρλσ + R̊�
μλσρ + R̊�

μσρλ +
1

2
R̊εμρλσ

)
= ερλσκ T̊

κ
μ ⇔ Gμν = Tμν,

∑
(μαβ)

R̊μραβ = 0,
∑
(μνρ)

D̊μR̊βανρ = 0.
(44)

Remark 10. Before proceeding we want to emphasize that equations (20) and (21) (the
Bianchi identities) do not imply in general in the validity of the analogous equations for the
duals of the torsion and curvature 2-forms, i.e. in general13

D �
g
T α �= �

g
Rα

β ∧ θβ, (45)

D �
g
Rα

β �= 0. (46)

5. Are �
g
T α and �

g
Rα

β the torsion and curvature 2-forms of any connection?

Despite the fact aforementioned in the last remark, we may pose the question: can �
g
T α and

�
g
Rα

β be the torsion and curvature 2-forms of a g-metric compatible connection, sayD′, which

defines on M the Riemann–Cartan structure (M, g,D′) where also an Einstein-like equation
is valid? If the answer is positive, the following set of equations must hold:

�
g
G′

μ = �
g
R′

μ − 1
2R′ �

g
θμ = �

g
T′

μ

D′T ′α = R′α
β ∧ θβ, (47)

D′R′α
β = 0,

13 In particular, a correct expression for D �
g
T α has been found in [28].

8
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and since by hypothesis �
g
T α = T ′α and �

g
Rα

β = R′α
β , considering G∗

μ = G ′
μ, R∗

μ =R′
μ,

R∗ = R′ = gμβR∗ρ

μ ρβ it must be

�
g
G∗

μ = �
g
R∗

μ − 1
2R∗ �

g
θμ = �

g
T′

μ

D′ �
g
T α = �

g
Rα

β ∧ θβ, (48)

D′ �
g
Rα

β = 0,

or in component form (and obvious notation)

(
Rμρλσ + Rμλσρ + Rμσρλ +

1

2
R∗εμρλσ

)
= ερλσκT

′ κ
μ ⇐⇒ G′

μν = T ′
μν, (49)

∑
(μαβ)

R∗
μραβ =

∑
(μαβ)

(
D′

μT ∗
ραβ − T

∗κ
μβT ∗

ρκα

)
, (50)

∑
(μνρ)

D′
μR∗

βανρ =
∑
(μνρ)

T ∗κ
νμ R∗

βακρ. (51)

Consequently, among the possible constraints in order to have a positive answer concerning
the question in the head of the section, the following two non-trivial constraints are derived.

(a) Using equations (41) and (50), it follows that

ερλσκT
κ
μ − 1

2
Rεμρλσ =

∑
(μαβ)

(
D′

μT ∗
ραβ − T

∗κ
μβT ∗

ρκα

)
. (52)

(b) Using equations (49) (42) we must have

ερλσκT
′κ
μ − 1

2
R∗εμρλσ =

∑
(μαβ)

(
DμTραβ − T κ

μβTρκα

)
. (53)

Let us analyze what those constraints imply if we start with (M, g, D̊), a Lorentzian
structure (part of a Lorentzian spacetime structure) representing a gravitational field in
GRT. In this case the second member of equation (53) must equal zero, and taking into
account that R̊ = T̊ ′ := T̊ κ

κ and R̊∗ = −T̊ ′ := T̊ ′κ
κ we obtain that the structure (M, g, D̊′)

must also be torsion-free and the following constraints must hold:

ερλσκ T̊
κ
μ = −1

2
T̊ εμρλσ , ερλσκ T̊

′κ
μ = −1

2
T̊ ′εμρλσ ,

∑
(μνρ)

D̊′
μR∗

βανρ =
∑
(μνρ)

D̊μRβανρ.
(54)

6. A particular case

Suppose we have as postulated14 in [1] a Riemann–Cartan structure where equations (41)–(43)
read
14 It is obvious from our previous considerations that the equation (R�

μρλσ + R�
μλσρ + R�

μσρλ) = ερλσκT κ
μ presented

in [1] as an identity is in general wrong and invalidates most of the conclusions of that paper. Also note that in [1] it
is defined a Hodge dual with respect to the first pair of indices. However, since they start from a Lorentzian structure
(where torsion is null) we have the validity of equation (9) and so in deriving equation (41) taking the dual with
respect to the first or second pair of indices does not matter.

9
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(
R�

μρλσ + R�
μλσρ + R�

μσρλ

) = ερλσκT
κ

μ ⇐⇒ Gμν = Tμν, (55)∑
(μαβ)

Rμραβ = εραβκ�
κ
μ, (56)

∑
(μνρ)

DμRβανρ = 0. (57)

It is obvious that we must then have

R = 0, εραβκ�
κ
μ =

∑
(μαβ)

(
DμTραβ − T κ

μβTρκα

)
,

∑
(μνρ)

T κ
νμRβακρ = 0,

and comparing equation (53) with equation (47) we obtain

ερλσκT
′κ
μ + 1

2T ′κ
κ εμρλσ = εραβκ�

κ
μ. (58)

So a Riemann–Cartan structure satisfying equations (55)–(57) is possible only for matter
distributions with T = T κ

κ = 0 and which obey very stringent constraints.
Also, [1] choose as ‘dual equations’ the following set:(

Rμρλσ + Rμλσρ + Rμσρλ +
1

2
R∗εμρλσ

)
= ερλσκ�

κ
μ ⇐⇒ G∗

μν = �μν, (59)

∑
(μαβ)

R∗
μραβ = εραβκT

κ
μ , (60)

∑
(μνρ)

D′
μR∗

βανρ = 0 (61)

which, of course, must imply

R∗ = 0, (62)

εραβκT
κ
μ =

∑
(μαβ)

(
D′

μT ∗
ραβ − T

∗κ
μβT ∗

ρκα

)
, (63)

∑
(μνρ)

T ∗κ
νμ R∗

βακρ = 0. (64)

Comparing equation (64) with equation (52) implies again that R = 0. So we end with the
following constraints, necessary for the validity of the equations proposed in [1]:

T ′κ
μ = �κ

μ, T = T κ
κ = 0, � = �κ

κ = 0,

εραβκ�
κ
μ =

∑
(μαβ)

(
DμTραβ − T κ

μβTρκα

)
, εραβκT

κ
μ =

∑
(μαβ)

(
D′

μT ∗
ραβ − T

∗κ
μβT ∗

ρκα

)
, (65)

∑
(μνρ)

T κ
νμRβακρ = 0,

∑
(μνρ)

T ∗κ
νμ R∗

βακρ = 0.

Such constraints are clearly violated by the examples in [1].

7. Is there a metric g′ and a metric connection D′ such that �
g′T

α and �
g′R

α
β are their

torsion and curvature forms?

Now, we can also put the question: in which conditions may we conceive that �
g
T α and �

g′
Rα

β are

the torsion and curvature 2-forms of a g′-metric compatible connection, sayD′, which defines

10
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on M the Riemann–Cartan structure (M, g′,D′) where an Einstein-like equation holds, i.e.
(with obvious notation) the validity of the following set of equations

(
R′ = g′μβR′ρ

μρβ

)
:

�
g′
G′

μ = �
g′
R′

μ − 1
2R′ �

g′
θμ = �

g′
T′

μ

D′T ′α = R′α
β ∧ θβ, (66)

D′R′α
β = 0.

Since by hypothesis we must have �
g
T α = T ′α and �

g
Rα

β = R′α
β , calling R∗ = g′μβR∗ρ

μρβ the

set of equations (66) must be equal to

�
g′
G∗

μ = �
g′
R∗

μ − 1
2R∗ �

g′
θμ = �

g′
T′

μ

D′ �
g
T ′α = �

g
Rα

β ∧ θβ, (67)

D′ �
g
R′α

β = 0,

which are similar but not identical to the set given by equation (48). Due to their complexity
we shall not inspect the nature of those equations solutions, a problem postponed for another
publication.

Remark 11. The constraints concerned in this case are more involved than in the previous
case, but we want to emphasize here that if we start with (M, g, D̊), a Lorentzian structure (part
of a Lorentzian spacetime structure) representing a gravitational field in GRT, the structure
(M, g′, D̊′) will be also torsion-free. Here we recall that [10] investigated long ago a similar
problem (but only in the linear approximation) and found a positive answer for the question
at the head of this section.

8. Conclusions

In this paper we present the correct constraints that must be satisfied by any theory (in a four-
dimensional manifold) that intends to provide a dual presentation of the gravitational field
equations for a general Riemann–Cartan theory. We compare our results with some of those
proposed by authors quoted in the introduction and present some constructive criticisms. We
hope that since the subject of duality becomes more important each day in, e.g., non-Abelian
gauge theories, gravity and M-theory our results shall become appreciated.
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Appendix A. Exterior covariant derivative D

Sometimes equations (14) are written by some authors as

Dθρ = T ρ, “Dωρ
μ = Rρ

μ”.

and D : sec �T ∗M → sec �T ∗M is said to be the exterior covariant derivative related to
the connection D. The second of equations (14) has been printed with quotation marks due
to the fact that it is not a correct equation. Indeed, a legitimate exterior covariant derivative

11
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operator15 is a concept that can be defined for (p + q)-indexed r-form fields16 as follows.
Suppose that X ∈ sec T

r+q
p M and let X

μ1...μp

ν1...νq
∈ sec �rT ∗M, such that for vi ∈ sec T M,

i = 0, 1, 2, . . . , r , then X
μ1...μp

ν1...νq
(v1, . . . , vr ) = X

(
v1, . . . , vr , eν1 , . . . , eνq

, θμ1 , . . . , θμp
)
. The

exterior covariant differential D of X
μ1...μp

ν1...νq
on a manifold with a general connection D is the

mapping

D: sec �rT ∗M → sec �r+1T ∗M , 0 � r � 4, (A.1)

such that17

(r + 1)DX
μ1...μp

ν1...νq
(v0, v1, . . . , vr )

=
r∑

ν=0

(−1)νDeν
X(v0, v1, . . . , v̌ν, . . . , vr , eν1 , . . . , eνq

, θμ1 , . . . , θμp )

−
∑

0�λ,ς�r

(−1)ν+ςX(T(vλ, vς ), v0, v1, . . . , v̌λ, . . . , v̌ς , . . . , vr , eν1 , . . . , eνq
, θμ1 , . . . , θμp ).

(A.2)

Then, we may verify that

DX
μ1...μp

ν1...νq
= dX

μ1...μp

ν1...νq
+ ωμ1

μs
∧ X

μs...μp

ν1...νq
+ · · · + ωμ1

μs
∧ X

μ1...μp

ν1...νq

−ωνs

ν1
∧ X

μ1...μp

νs ...νq
− · · · − ωμ1

μs
∧ X

μ1...μp

ν1...νs
.

Remark 12. Note that if equation (A.2) is applied on any one of the connection 1-forms
ωμ

ν we would obtain Dωμ
ν = dωμ

ν + ωμ
α ∧ ωα

ν − ωα
ν ∧ ωμ

α . So we see that the symbol Dωμ
ν in

equation (14), supposedly defining the curvature 2-forms, is simply wrong, despite this being
an equation printed in many physics textbooks and many professional articles.

A.1. Properties of D

The exterior covariant derivative D satisfy the following properties:
(a) For any XJ ∈ sec �rT ∗M and YK ∈ sec �sT ∗M are sets of indexed forms18,

D(XJ ∧ YK) = DXJ ∧ YK + (−1)rsXJ ∧ DYK. (A.3)

(b) For any Xμ1...μp ∈ sec �rT ∗M ,

DDXμ1...μp = dXμ1...μp + Rμ1
μs

∧ Xμs...μp + · · · + Rμp

μs
∧ Xμ1...μs . (A.4)

(c) For any metric-compatible connection D if g = gμνθ
μ ⊗ θν then Dgμν = 0.

Appendix B. Relation between the Riemann curvature tensors of the Lévi-Cività
connection of g̊ and a g-compatible Riemann–Cartan connection

Let (M, g̊, D̊) and (M, g,D) be respectively a Lorentzian and a Riemann–Cartan structure19

on the same manifold M such that

D̊g̊ = 0, Dg = 0, (B.1)

15 Sometimes also called the exterior covariant differential.
16 Which is not the case of the connection 1-forms ωα

β , despite the name. More precisely, the ωα
β are not true indexed

forms, i.e. there does not exist a tensor field ω such that ω(ei , eβ, ϑα) = ωα
β(ei ).

17 As usual the inverted hat over a symbol (in equation (A.2)) means that the corresponding symbol is missing in the
expression.
18 Multi indices are here represented by J and K.
19 Note that (M, g, D) and (M, g̊, D̊) are in general Riemann–Cartan–Weyl structures. More general formulas relating
two arbitrary general connections may be found, e.g., in [27].
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with the nonmetricity of D associated with g̊ being given by Q := −Dg̊. Let moreover
the connection coefficients of D̊ and D in the arbitrary bases dual bases {eα} and {θρ} for
T U ⊂ T M and T ∗U ⊂ T ∗M be

D̊∂α
θρ = −�̊

ρ
αβθβ, D∂α

θρ = −L
ρ
αβθβ, (B.2)

and Qαβσ = −Dαg̊βσ . Define the components of the strain tensor of the connection D
(associated with D̊) by

S
ρ
αβ = (

L
ρ
αβ + L

ρ
αβ

) − (
�̊

ρ
αβ + �̊

ρ
αβ

)
(B.3)

It is trivially established that

L
ρ
αβ = �̊

ρ
αβ + 1

2T
ρ
αβ + 1

2S
ρ
αβ. (B.4)

where �̊
ρ
αβ are the components of the Lévi-Cività connection of g and T

ρ
αβ are the components

of the torsion tensor of D20.
Equation (B.4) can be used to relate the covariant derivatives with respect to the

connections D̊ and D of any tensor field on the manifold. In particular, recalling that
D̊αg̊βσ =eα(g̊βσ ) − g̊μσ �̊

μ
αβ − g̊βμ�̊μ

ασ = 0, we obtain the expression of the nonmetricity
tensor of D in terms of the torsion and the strain, namely

Qαβσ = 1
2

(
g̊μσ T

μ
αβ + g̊βμT μ

ασ

)
+ 1

2

(
g̊μσ S

μ
αβ + g̊βμSμ

ασ

)
. (B.5)

Equation (B.5) can be inverted to yield the expression of the strain in terms of the torsion and
the nonmetricity. We obtain

S
ρ
αβ = g̊ρσ (Qαβσ + Qβσα − Qσαβ) − g̊ρσ

(
g̊βμT μ

ασ + g̊αμT
μ
βσ

)
. (B.6)

From equations (B.5) and (B.6) it is clear that nonmetricity and strain can be used
interchangeably in the description of the geometry of a Riemann–Cartan–Weyl space. In
particular, we have the relation

Qαβσ + Qσαβ + Qβσα = Sαβσ + Sσαβ + Sβσα, where Sαβσ = g̊ρσ S
ρ
αβ. (B.7)

In order to simplify our next equations, let us introduce the notation

K
ρ
αβ = L

ρ
αβ − �̊

ρ
αβ = 1

2

(
T

ρ
αβ + S

ρ
αβ

)
. (B.8)

From equation (B.6) it follows that

K
ρ
αβ = − 1

2 g̊ρσ (Dαg̊βσ + Dβg̊σα − Dσ g̊αβ) − 1
2 g̊ρσ

(
g̊μαT

μ
σβ + g̊μβT μ

σα − g̊μσ T
μ
αβ

)
. (B.9)

Note also that for Dg̊ = 0, K
ρ
αβ is the so-called contorsion tensor.

Returning to equation (B.4), we obtain now the relation between the curvature tensor
Rμ

ρ
αβ associated with the connection D and the Riemann curvature tensor R̊μ

ρ
αβ of the Lévi-

Cività connection D associated with the metric g. We obtain, by a straightforward calculation,

Rμ
ρ
αβ = R̊μ

ρ
αβ + Jμ

ρ
[αβ], (B.10)

where

Jμ
ρ
αβ = D̊αK

ρ
βμ − K

ρ
βσKσ

αμ = DαK
ρ
βμ − Kρ

ασKσ
βμ + Kσ

αβKρ
σμ. (B.11)

Multiplying both sides of equation (B.10) by 1
2θα ∧ θβ we obtain

Rρ
μ = R̊ρ

μ + Jρ
μ, where Jρ

μ = 1
2Jμ

ρ
[αβ]θ

α ∧ θβ. (B.12)

From equation (B.10) we also obtain the relation between the Ricci tensors of the connections
D and D̊. The Ricci tensor is defined by

Ricci = Rμα dxμ ⊗ dxν, where Rμα := Rμ
ρ
αρ. (B.13)

20 More details may be found, e.g., in [27].
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Then we have

Rμα = R̊μα + Jμα, (B.14)

with

Jμα = D̊αKρ
ρμ − D̊ρK

ρ
αμ + Kρ

ασKσ
ρμ − Kρ

ρσ Kσ
αμ

= DαKρ
ρμ − DρK

ρ
αμ − Kρ

σαKσ
ρμ + Kρ

ρσ Kσ
αμ. (B.15)

Observe that since the connection D is arbitrary, its Ricci tensor will be not be symmetric
in general. Then, since the Ricci tensor R̊μα of D̊ is necessarily symmetric, we can split
equation (B.14) into

R[μα] = J[μα], R(μα) = R̊(μα) + J(μα). (B.16)

Appendix C. Some important identities

Let (M, g) be a manifold and a Lorentzian metric as defined in section 1. Let moreover �pT ∗M
(p = 0, 1, 2, 3, 4) be the bundle of homogeneous p-form fields and �T ∗M = ⊕4

p=0�
pT ∗M

the bundle of non homogeneous forms fields. We define in T ∗M a metric field g ∈ sec T 2
0 M

such that concerning the general bases {eμ} and {θμ} introduced in section 1, if g = gμνθ
μ⊗θν

and g= gμνeμ ⊗ eν then gμαgαν = δμ
ν . In �T ∗M we introduce a scalar product

· : �T ∗M × �T ∗M → �T ∗M (C.1)

such that if A,B ∈ sec �rT ∗M are simple homogeneous r-forms with A = u1 ∧ · · · ∧ ur

and B = v1 ∧ · · · ∧ vr , ui, vj ∈ sec �1T ∗M, then A · B = det(g(ui, vj)), where (g(ui, vj )
means the matrix with entries (g(ui, vj )). This scalar product is then extended by linearity
and orthogonality to all �T ∗M , and A · B = 0 if A ∈ sec �rT ∗M , and B ∈ sec �sT ∗M with
r �= s and it is agreed that if a, b ∈ sec �0T ∗M, then a · b = ab, the product of functions.

If the metric manifold (M, g) is also endowed with an orientation, i.e. a volume n-vector
τg̊ ∈ �4T ∗M such that τg̊ · τg̊ = −1, then a natural isomorphism between sections of �rT ∗M
and �4−rT ∗M (r = 0, . . . , 4) can be introduced. The Hodge star operator (or Hodge dual) is
the linear mapping �

g
: sec �rT ∗M → sec �4−rT ∗M such that

A ∧ �
g
B = (A · B )τg̊, (C.2)

for every A,B ∈ �rT ∗M . Of course, this operator is naturally extended to an isomorphism
�
g

: sec �T ∗M → sec �T ∗M by linearity. The inverse �
g
−1 : sec �rT ∗M → sec �4−nT ∗M

of the Hodge star operator is given by �
g
−1 = −(−1)r(4−r)�

g
. For anyA,B ∈ sec �T ∗M

A · B = 〈ÃB〉0 = 〈AB̃〉0 = B · A, (C.3)

where Ã means the the reverse of A. If A = u1 ∧ · · · ∧ ur, then Ã = ur ∧ · · · ∧ u1 and
〈 〉0 : sec �T ∗M → sec �0T ∗M is the projection of a general non homogeneous form into
the �0T ∗M part.

Remark 13. Suppose that {εi} is, e.g., an orthonormal basis of �1T ∗M and {εj } is reciprocal
basis, i.e. εi · εk = δk

i . Then any Y ∈ sec �pT ∗M can be written as

Y = 1

p!
Y j1... jp εj1 ∧ · · · ∧ εjp

= 1

p!
Yj1 ...jp

εj1 ∧ · · · ∧ εjp (C.4)

and

Y j1... jp = Y · (εj1 ∧ · · · ∧ εjp ), Yj1... jp
= Y · (εj1 ∧ · · · ∧ εjp

). (C.5)
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We define the right and left contractions of non homogeneous differential forms as
follows. For arbitrary multiforms X, Y,Z ∈ sec �T ∗M , the left (�

g
) and right (�

g
)

contractions of X and Y are the mappings �
g

: sec �T ∗M × sec �T ∗M → sec �T ∗M and

�
g

: sec �T ∗M × sec �T ∗M → sec �T ∗M such that

(X�
g
Y ) · Z = Y · (X̃ ∧ Z), (X�

g
Y ) · Z = X · (Z ∧ Ỹ ). (C.6)

These contracted products �
g

and �
g

are inner derivations on �T ∗M . Sometimes the contractions

are called the interior products. Both contract products satisfy the left and right distributive
laws but they are not associative.

Now some important properties of the contractions used in the calculations of the text are
presented.

(i) For any a, b ∈ sec �0T ∗M, and Y ∈ sec �T ∗M

a�
g
b = a�

g
b = ab (product of functions),

a�
g
Y = Y�

g
a = aY (multiplication by scalars).

(C.7)

(ii) If a, b1, . . . , bk ∈ sec �T ∗M, then a�
g
(b1 ∧ · · · ∧ bk) = ∑k

j=1(−1)j+1(a · bj )b1 ∧ · · · ∧
b̌j ∧ · · · ∧ bk , where the symbol b̌j means that the bj factor does not appear in the j -term
of the sum.

(iii) For any Yj ∈ sec �jT ∗M and Yk ∈ sec �kT ∗M with j � k

Yj�
g
Yk = (−1)j (k−j)Yk�

g
Yj . (C.8)

(iv) For any Yj ∈ sec �jT ∗M and Yk ∈ sec �kT ∗M

Yj�
g
Yk = 0, if j > k, Yj�

g
Yk = 0, if j < k. (C.9)

(v) For any Xk, Yk ∈ sec �kT ∗M , then Xk�
g
Yk = Yk�

g
Yk = X̃k · Yk = Xk · Ỹk.

(vi) For any v ∈ sec �1T ∗M and X, Y ∈ sec �T ∗M , then v�
g
(X∧Y ) = (v�

g
X)∧Y +X̂∧(v�

g
Y ).

Also, if A,B ∈ sec �kT ∗M then A�
g
(B�

g
C) = (A∧B)�

g
C, and A�

g
(B�

g
C) = A�

g
(B ∧C).

(vii) if A,B ∈ sec �T ∗M then

(A�
g
B) · C = B · (Ã ∧ C), (Bg�

g
A) · C = B · (C ∧ Ã). (C.10)

Finally we present some important identities involving contractions and the Hodge dual.
Let Ar ∈ sec �rT ∗M and Bs ∈ sec �sT ∗M , r, s � 0:

Ar ∧ �
g
Bs = Bs ∧ �

g
Ar r = s; Ar · �

g
Bs = Bs · �

g
Ar; r + s = n,

Ar ∧ �
g
Bs = (−1)r(s−1) �

g
(Ãr�

g
Bs); r � s,

Ar�
g
�
g
Bs = (−1)rs �

g
(Ãr ∧ Bs); r + s � n,

�
g
Ar = Ãr�

g
τg̊, �

g
τg̊ = −1, �

g
1 = τg̊.

(C.11)

15



J. Phys. A: Math. Theor. 43 (2010) 205206 R da Rocha and W A Rodrigues Jr

References

[1] Argurio R and Dehouck F 2009 Why not a di-NUT? Or gravitational duality and rotating solutions
arXiv:0909.0542v1 [hep-th]

[2] Argurio R, Dehouck F and Houart L 2009 Supersymmetry and gravitational duality Phys. Rev. D 79 125001
(arXiv:0810.4999v3 [hep-th])

[3] Barnich G and Troessaert C 2009 Manifest spin 2 duality with electric and magnetic sources J. High Energy
Phys. JHEP01(2009)030 (arXiv:0812.0552v2 [hep-th])

[4] Benn I M and Tucker R W 1987 An Introduction to Spinors and Geometry (Bristol and New York: Adam
Hilger)

[5] Bergshoeff E A, de Roo M, Kerstan S F, Kleinschmidt A and Riccioni F 2009 Dual gravity and matter Gen.
Rel. Grav 41 39–48 (arXiv:0803.1963v2 [hep-th])
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