
Geometry and the Nature of
Gravitation

Waldyr A. Rodrigues Jr.

IMECC-UNICAMP

ICCA9-WEIMAR 2011

1



The Flat and the Curved Punctured Sphere
Do not Confuse Curvature with Bending

Levi Civita Connection D and Nunes Connection 
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The Gravitational Field in GR
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As mentioned in section 3.8, conservation laws have a grea
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Alternative Representation for a
Reliable Gravitational Field
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The Many Faces of Maxwell Dirac and Einstein Equations A Clifford

Bundle Approach

2 2

, , , , , : 0, : 0;

where sec and sec are respectively the torsion and curvature 2-forms of .

, , , , , : , :

M D d d

T M T M D

M d d d


    

   

 

         

   

        





g

g

g

g

a a a b a a a c
b b b c b

a a
b

a a a b a a a
b b b

g g

g g g









 

2 2

0;

where sec and sec are respectively the torsion and curvature 2-forms of .d T M T M




 

 

     

a c
c b

a a a
bg 

5



The Potentials { } as Representatives of the Gravitational Fieldag

:

is the gravitational Lagrangian

is the matter Lagrangian

:

1 1 1
( ) ( ). ( )

2 2 4

The form of this Lagr

g m

g

m

g
g g gg g

d

Lagran

d d

gian Densit

d

y

 

 

        

Postulate

  a a a b
a a a bg g g g g g g g

 





 

angian is notable, the first term is Yang-Mills like, the second one is a kind of

gauge fixing term and the third term is an autointeraction term describing the interaction of the

of the pvorticities otentials.

Before proceeding we observe that this Lagrangian is not invariant under arbitrary point

of the basic cotetrad fields. In fact, if , , wher

dependent

Lorentz rotations R R x M    a a a b a
bg g g g

1,3 1,3

e

( ) , the homogeneous and orthochronous Lorentz group and ( ) we get

exact differential.

So, the field equations derive

g g

x L R x Spin
  

  

a
b

 



d from the variational principle results invariant under a change of gauge.

6



The Field Equations
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Maxwell Like Form of the Field Equations
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The Many Faces of Maxwell and Einstein Equations
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Hamiltonian Formalism
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Conclusions
• We recalled that a gravitational field generated by a given energy-

momentum tensor can be represented by distinct geometrical
structures and if we prefer, we can even dispense all those geometrical
structures and simply represent the gravitational field as a field in the
Faraday's sense living in Minkowski spacetime. The explicit Lagrangian
density for this theory has been given and the equations of motion
presented in a Maxwell like form and shown to be equivalent to
Einstein's equations in a precise mathematical sense. We hope that
our study clarifies the real difference between mathematical models
and physical reality and leads people to think about the real physical
nature of the gravitational field (and also of the electromagnetic field
as suggested, e.g., by the works of Laughlin and Volikov. We discussed
also an Hamiltonian formalism for our theory and the concepts of
energy defined by Eq.(29) and the one given by the ADM formalism.
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