

Gravitation

Waldyr A. Rodrigues Jr. IMECC-UNICAMP ICCA9-WEIMAR 2011

The Flat and the Curved Punctured Sphere Do not Confuse Curvature with Bending

Levi Civita Connection D and Nunes Connection \bigtriangledown

• Lovi Civita Connection Da = 0

$$(x^{1}, x^{2}) = (\vartheta, \varphi), \ 0 < \vartheta < \pi, \ 0 < \varphi < 2\pi, \ \left(\boldsymbol{e}_{1} = \frac{\partial}{\partial x^{1}}, \ \boldsymbol{e}_{2} = \frac{1}{\sin x^{1}} \frac{\partial}{\partial x^{2}}\right), \ \left(\theta^{1} = dx^{1}, \theta^{2} = \sin x^{1} dx^{2}\right)$$
$$[\boldsymbol{e}_{i}, \boldsymbol{e}_{j}] = c_{ij}^{k} \boldsymbol{e}_{k}, \ c_{12}^{2} = -c_{21}^{2} \cot x^{1}, \ g = dx^{1} \otimes dx^{1} + \sin^{2} x^{1} dx^{2} \otimes dx^{2}.$$

$$D_{\partial_{\mu}}\partial_{\nu} = \Gamma^{\rho}_{\mu\nu}\partial_{\rho}, \ \Gamma^{2}_{21} = \Gamma^{\varphi}_{\varphi\theta} = \Gamma^{2}_{12} = \Gamma^{\varphi}_{\theta\varphi} = \cot \theta, \ \Gamma^{1}_{22} = \Gamma^{\varphi}_{\varphi\varphi} = -\cos \theta \sin \theta,$$

$$D_{e_{i}}e_{j} = \omega^{k}_{ij}e_{k}, \ \omega^{2}_{21} = \cot \theta, \ \omega^{1}_{22} = -\cot \theta.$$

$$\mathcal{T}^{D}\left(\theta^{k}, e_{i}, e_{j}\right) = \theta^{k}\left(\tau^{D}\left(e_{i}, e_{j}\right)\right) = \theta^{k}\left(D_{e_{i}}e_{j} - D_{e_{j}}e_{i} - [e_{i}, e_{j}]\right) = 0,$$

$$\mathcal{T}^{D} := \frac{1}{2}T^{k}_{ij}\theta^{i} \wedge \theta^{j} \otimes e_{k} = \Theta^{k} \otimes e_{k}, \ \Theta^{k} := \frac{1}{2}T^{k}_{ij}\theta^{i} \wedge \theta^{j}$$

$$R^{D}(e_{k}, \theta^{a}, e_{i}, e_{j}) = \theta^{a}\left(\left(D_{e_{j}}D_{e_{i}} - D_{e_{i}}D_{e_{j}} - D_{[e_{i}, e_{j}]}\right)e_{k}\right),$$

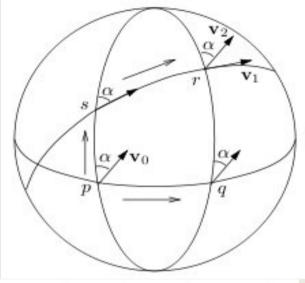
$$R^{1}_{121} = -R^{1}_{112} = R^{2}_{112} = -R^{2}_{121} = -1.$$
• Nunes Connection $\nabla g = 0$

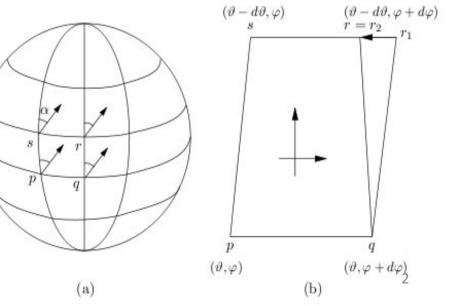
$$\nabla_{e_{i}}e_{j} = 0,$$

$$R^{\nabla} = 0,$$

$$\tau^{\nabla}\left(e_{i}, e_{j}\right) = \nabla_{e_{j}}e_{i} - \nabla_{e_{i}}e_{j} - [e_{i}, e_{j}] = -[e_{i}, e_{j}],$$

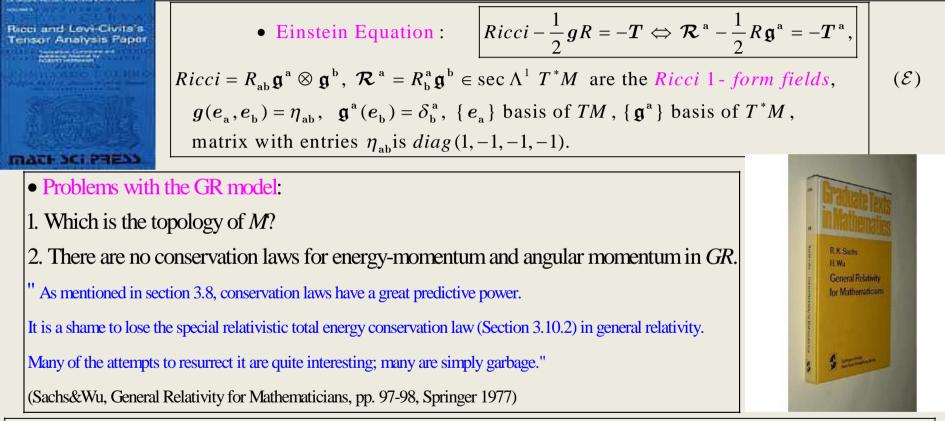
$$T^{2}_{21} = -T^{2}_{12} = -\cot \theta.$$
(a)





The Gravitational Field in GR

• *GR* models a gravitational field generated by a given energy-momentum tensor *T* by a Lorentzian spacetime $\langle M, D, g, \tau_g, \uparrow \rangle$, where *M* is a noncompact (locally compact) 4-d Hausdorff manifold, *g* is a Lorentzian metric field, *D* is the Levi-Civita connection of *g*, $\tau_g \in \sec \Lambda^4 T^* M$ is a orientation, \uparrow is a time orientation.



- Possible solutions:
- (i) represent the gravitational field by a different geometrical model, e.g., e.g., a *teleparallel spacetime* $\langle M, \nabla, g, \tau_g, \uparrow \rangle$;

• (ii) represent the gravitational field as a field in Faraday sense living in *Minkowski* spacetime $\langle M, D, \eta, \tau_{\eta}, \uparrow \rangle$. ³

Alternative Representation for a Reliable Gravitational Field

- Suppose *M* is *parallelizable*, i.e.: \exists four *global* vector fields $e_a \in \sec TM$, a = 0, 1, 2, 3, and $\{e_a\}$ is a *basis* for *TM*.
- Motivation is *Geroch theorem*: Necessary and sufficient condition for a 4-dimensional Lorentzian manifold $\langle M, g \rangle$ to admit spinor fields is that the orthonormal frame bundle be trivial. (thus parallelizable)

(Geroch, R. Spinor Structure of Space-Times in General Relativity I, J. Math. Phys. 9, 1739-1744 (1968).)

- Let $\{g^a\}$, $g^a \in \sec T^*M$ be the corresponding *dual basis*, $g^a(e_b) = \delta_b^a$. Suppose moreover that not all g^a are *closed*, i.e., $dg^a \neq 0$, for at least some a = 0, 1, 2, 3.
- $\mathfrak{g}^0 \wedge \mathfrak{g}^1 \wedge \mathfrak{g}^2 \wedge \mathfrak{g}^3 \in \sec \Lambda^4 T^* M$ defines a (positive) orientation for M.
- Define a *Lorentzian metric* in *M* by $g = \eta_{ab} \mathfrak{g}^{a} \otimes \mathfrak{g}^{b}$. Define $g = \eta^{ab} e_{a} \otimes e_{b} \in \sec T_{0}^{2} M$.
- e_0 is a global timelike vector field (according to g) and \uparrow defines a time orientation for M.
 - Since some of the $d\mathfrak{g}^{a} \neq 0$, we have $[e_{a}, e_{b}] = c_{ab}^{k} e_{k}$ and moreover $d\mathfrak{g}^{a} = -\frac{1}{2}c_{ab}^{k}\mathfrak{g}^{a} \wedge \mathfrak{g}^{b}$.

• Next introduce *two different* metric compatible connections in M, namely D, the Levi-Civita connection of g, and ∇ , a *teleparallel* connection.

$$D_{e_{\mathbf{a}}} e_{\mathbf{b}} = \omega_{\mathbf{ab}}^{\mathbf{k}} e_{\mathbf{k}}, \quad D_{e_{\mathbf{a}}} \mathfrak{g}^{\mathbf{b}} = -\omega_{\mathbf{ak}}^{\mathbf{b}} \mathfrak{g}^{\mathbf{k}}, \qquad \nabla_{e_{\mathbf{a}}} e_{\mathbf{b}} = 0, \quad \nabla_{e_{\mathbf{a}}} \mathfrak{g}^{\mathbf{b}} = 0.$$

• $\omega_{a}^{k} = \omega_{ab}^{k} \mathfrak{g}^{b}$ are the connection 1-forms of *D* and $\overline{\omega}_{a}^{k} = \overline{\omega}_{ab}^{k} \mathfrak{g}^{b} = 0$ are the connection 1-forms of ∇ in the basis $\{e_{a}\}$.

► Then we immediately have two possible structures:

• $\langle M, D, g, \tau_g, \uparrow \rangle$, $\Theta^{\mathbf{a}} \coloneqq dg^{\mathbf{a}} + \omega_{\mathbf{b}}^{\mathbf{a}} \wedge g^{\mathbf{b}} = 0$, $\mathcal{R}_{\mathbf{b}}^{\mathbf{a}} \coloneqq d\omega_{\mathbf{b}}^{\mathbf{a}} + \omega_{\mathbf{c}}^{\mathbf{a}} \wedge \omega_{\mathbf{b}}^{\mathbf{c}} \neq 0$; where $\Theta^{\mathbf{a}} \in \sec \Lambda^2 T^* M$ and $\mathcal{R}_{\mathbf{b}}^{\mathbf{a}} \in \sec \Lambda^2 T^* M$ are respectively the torsion and curvature 2-forms of D.

•
$$\langle M, \nabla, g, \tau_g, | \rangle$$
, $\mathcal{F}^a \coloneqq d\mathfrak{g}^a + \omega_b^a \wedge \mathfrak{g}^b = d\mathfrak{g}^a$, $\mathcal{R}_b^a \coloneqq d\omega_b^a + \omega_c^a \wedge \omega_b^c = 0$;
where $\mathcal{F}^a = d\mathfrak{g}^a \in \sec \Lambda^2 T^* M$ and $\mathcal{R}_b^{\bar{a}} \in \sec \Lambda^2 T^* M$ are respectively the torsion and curvature 2-forms of ∇ .

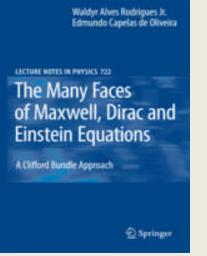
• Now, before proceeding we suppose that:

$$\Lambda T^*M = \bigoplus_{r=0}^4 \Lambda^r T^*M \hookrightarrow \mathcal{C}\ell(M,g),$$

where $C\ell(M,g)$ is the *Clifford bundle of non hom ogeneous differential forms* and we use the conventions about the scalar product, left and right contractions and the Hodge star operator \star_{g} and the Hodge coderivative operator δ_{g} as in the book:

W. A. Rodrigues Jr. and E. Capelas de Oliveira, *The Many Faces of Maxwell*, *Dirac and Einstein Equations*. A Clifford Bundle Approach, Springer 2007.

errata at: http://www.ime.unicamp.br/~walrod/errata11012010.pdf



The Potentials $\{g^a\}$ as Representatives of the Gravitational Field

Lagrangian Density: $\mathcal{L} = \mathcal{L}_g + \mathcal{L}_m$

 \mathcal{L}_{g} is the gravitational Lagrangian

 \mathcal{L}_m is the matter Lagrangian

Postulate :

$$\mathcal{L}_{g} = -\frac{1}{2}d\mathfrak{g}^{\mathbf{a}} \wedge \underset{g}{\star} d\mathfrak{g}_{\mathbf{a}} + \frac{1}{2} \underset{g}{\delta} \mathfrak{g}^{\mathbf{a}} \wedge \underset{g}{\star} \underset{g}{\delta} \mathfrak{g}_{\mathbf{a}} + \frac{1}{4} (d\mathfrak{g}^{\mathbf{a}} \wedge \mathfrak{g}_{\mathbf{a}}) \wedge \underset{g}{\star} (d\mathfrak{g}^{\mathbf{b}} \wedge \mathfrak{g}_{\mathbf{b}}). \quad (\mathcal{L})$$

The form of this Lagrangian is notable, the first term is Yang-Mills like, the second one is a kind of gauge fixing term and the third term is an autointeraction term describing the interaction of the *vorticities* of the potentials.

Before proceeding we observe that this Lagrangian is not invariant under arbitrary point *dependent* Lorentz rotations of the basic cotetrad fields. In fact, if $\mathfrak{g}^{a} \mapsto \mathfrak{g}'^{a} = \Lambda_{b}^{a}\mathfrak{g}^{b} = R\mathfrak{g}^{a}\tilde{R}, \forall x \in M$, where $\Lambda_{b}^{a}(x) \in L_{+}^{\uparrow}$, the homogeneous and orthochronous Lorentz group and $R(x) \in Spin_{1,3} \subset \mathbb{R}_{1,3}$ we get

 $\mathcal{L}'_{g} - \mathcal{L}_{g} = \text{exact differential.}$

So, the field equations derived from the variational principle results invariant under a change of gauge.

The Field Equations

$$d \star \mathcal{S}_{d} + \star t_{d} = - \star \mathcal{T}_{d}, \qquad (1)$$

$$\begin{aligned} & \star t_{g} := \frac{\partial \mathcal{L}_{g}}{\partial \mathfrak{g}^{d}} = \mathfrak{g}_{d} \, \lrcorner_{g} \mathcal{L}_{g} - (\mathfrak{g}_{d} \, \lrcorner_{g} d \mathfrak{g}^{a}) \wedge \frac{\partial \mathcal{L}_{g}}{\partial d \mathfrak{g}^{d}} \\ & = \frac{1}{2} (\mathfrak{g}_{d} \, \lrcorner_{g} d \mathfrak{g}^{a}) \wedge \star d \mathfrak{g}_{a} - d \mathfrak{g}^{a} \wedge (\mathfrak{g}_{d} \, \lrcorner_{g} \star d \mathfrak{g}^{a}) \\ & + \frac{1}{2} d (\mathfrak{g}_{d} \, \lrcorner_{g} \star \mathfrak{g}^{a}) \wedge \star d \, \star g \, \sharp_{g} \mathfrak{g}_{a} - d \mathfrak{g}^{a} \wedge (\mathfrak{g}_{d} \, \lrcorner_{g} d \, \star \mathfrak{g}^{a}) \\ & - \frac{1}{4} (d \mathfrak{g}^{a} \wedge \mathfrak{g}_{a}) \wedge \star g \, \star g \, \sharp_{g} \mathfrak{g}_{a} + \frac{1}{2} (\mathfrak{g}_{d} \, \lrcorner_{g} d \, \star \mathfrak{g}^{a}) \wedge \star g \, \star g$$

$$\star_{g} \mathcal{T}_{d} = \frac{\partial \mathcal{L}_{m}}{\partial \mathbf{g}^{d}} = - \star_{g} T_{d}. \quad (4)$$

7

Maxwell Like Form of the Field Equations

• Recall that $\mathcal{F}^{d} = d\mathfrak{g}^{d}$ and define:

$$\mathfrak{h}_{\mathbf{d}} \coloneqq d[(\mathfrak{g}_{\mathbf{d}} \wedge \underset{g}{\star} \mathfrak{g}^{\mathbf{a}}) \wedge \underset{g}{\star} d\mathfrak{g}_{\mathbf{a}} - \frac{1}{2}\mathfrak{g}_{\mathbf{d}} \wedge \underset{g}{\star} (\mathcal{F}^{\mathbf{a}} \wedge \underset{g}{\star} \mathfrak{g}_{\mathbf{a}})], \quad (5)$$

and a possible legitimate energy momentum tensor for the gravitational field

$$\mathbf{t}_{\mathrm{d}} = \mathbf{h}_{\mathrm{d}} + t_{\mathrm{d}}.$$
 (6)

Then, recalling Eq.(1) and the definition of δ , we can write the Maxwell like

equations for the gravitational field:

(a)
$$d\mathcal{F}^{d} = 0$$
, (b) $\delta_{g}\mathcal{F}_{d} = -(\mathcal{T}_{d} + \mathfrak{t}_{d})$. (7)

• Compare Eqs.(7a) and (7b) with Maxwell Equations in the Structure $\langle M, g, \tau_g, \uparrow \rangle$. $A \in \sec \Lambda^1 T^* M, J_e \in \sec \Lambda^1 T^* M, F = dA \in \sec \Lambda^2 T^* M,$

$$dF = 0, \quad \underset{g}{\delta} F = -J_{e}. \tag{8}$$

The Many Faces of Maxwell and Einstein Equations

• Dirac operator acting on
$$A_r \in \sec \Lambda^r T^* M \oplus \mathcal{C}(M, g)$$
 in $\langle M, D, g, \tau_g, \uparrow \rangle$:

$$\begin{array}{c} \partial := \mathfrak{g}^a D_{\mu_a}, \ \partial = \partial \wedge + \partial_{a} = d - \delta_{s}; \ \partial \wedge A_r = dA_r, \ \partial_{a} A_r = -\frac{\delta}{\delta} A_r. \end{array} (9)$$

$$\begin{array}{c} \partial^2 A_r = (\partial \wedge \partial) A_r + (\partial \cdot \partial) A_r; \ \partial^2 A_r = -(d \delta + d \delta_r) A_r, \\ (\partial \wedge \partial) \neq -d \delta_r, \ (\partial \wedge \partial) \neq -\delta d; \ (\partial \cdot \partial) \neq -d \delta_r, \ (\partial \cdot \partial) \neq -\delta d \\ (\partial \wedge \partial) is called the Ricci operator and: (\partial \wedge \partial) \mathfrak{g}^a = \mathcal{R}^a = R_b^a \ \mathfrak{g}^b \in \sec \Lambda^{1} T^* M \oplus \mathcal{C}(M, g), \\ \Box = (\partial \cdot \partial) \text{ is the covariant D'Alembertian, } \bullet = -(d \delta + d \delta_r) = \partial^2 \text{ is called Hodge Laplacian.} \end{array}$$
(10)

$$\begin{array}{c} \text{Oirac operator acting on } A_r \in \sec \Lambda' T^* M \oplus \mathcal{C}(M, g) \text{ in } \langle M, \nabla, g, \tau_g, \uparrow \rangle \text{ : } \\ \partial := \mathfrak{g}^a \nabla_{\mu_a}, \ \partial = \partial + \partial_{\mu_a}; \ \partial \wedge A_r = dA_r - \mathcal{F}^a \wedge (\mathfrak{g}_{n-} A_r), \ \partial_{\mu_a} A_r = -\delta A_r - \mathcal{F}^a_{-\mu_a}(\mathfrak{g}_n \wedge A_r). \end{array}$$
(10)

$$\begin{array}{c} \text{ME in } \langle M, g, \tau_g, \uparrow \rangle \text{ : } \\ dF = 0, \ \delta F = -J_r \end{array} \Rightarrow \left(\int Maxwell Equation in \langle M, D, g, \tau_g, \uparrow \rangle \text{ : } \\ \partial F = J_r - \mathcal{F}^a \wedge (\mathfrak{g}_{n-} A_r) - \mathcal{F}^a_{-\mu_a}(\mathfrak{g}_n \wedge F). \end{array}$$
(12)

$$\begin{array}{c} \text{Oravitational Equation in } \langle M, \nabla, g, \tau_g, \uparrow \rangle \text{ : } \\ \partial F^d = T^d + t^d - (\partial \cdot \partial)\mathfrak{g}^d \end{array} \Rightarrow \left(\int \mathcal{R}^d = -T^d + t^d + \frac{1}{2}R\mathfrak{g}^d (\mathcal{E}) \\ \mathcal{R}^d = -T^d + t^d + \frac{1}{2}R\mathfrak{g}^d (\mathcal{E}) \\ \mathcal{R}^d = -T^d + t^d + \frac{1}{2}R\mathfrak{g}^d (\mathcal{E}) \end{array} \right)$$

The Lagrangian density (Eq.(\mathcal{L})) for the gravitational field $\mathfrak{F}^{a} = d\mathfrak{g}^{a}$,

$$\mathcal{L}_{g} = -\frac{1}{2}d\mathfrak{g}^{\mathbf{a}} \wedge \underset{g}{\star} d\mathfrak{g}_{\mathbf{a}} + \frac{1}{2} \underset{g}{\delta} \mathfrak{g}^{\mathbf{a}} \wedge \underset{g}{\star} \underset{g}{\delta} \mathfrak{g}_{\mathbf{a}} + \frac{1}{4} (d\mathfrak{g}^{\mathbf{a}} \wedge \underset{g}{\star} \mathfrak{g}_{\mathbf{a}}) \wedge \underset{g}{\star} (d\mathfrak{g}^{\mathbf{b}} \wedge \underset{g}{\star} \mathfrak{g}_{\mathbf{b}}),$$

differs from the Einstein Hilbert Lagrangian density $\mathcal{L}_{EH} = \frac{1}{2}R\tau_g$ by an exact differential, i.e.,

$$\mathcal{L}_{EH} - \mathcal{L}_{g} = -d(\mathfrak{g}^{\mathbf{a}} \wedge \star d\mathfrak{g}_{\mathbf{a}}).$$

This can be seen with some algebra (details in *The Many Faces of* ...) once we recall that

$$\mathcal{L}_{EH} = \frac{1}{2} R \tau_g = \frac{1}{2} \mathcal{R}_{cd} \wedge \underset{g}{\star} \left(\mathbf{g}^{c} \wedge \mathbf{g}^{d} \right) = \frac{1}{2} \left(d \omega_{d}^{c} + \omega_{a}^{c} \wedge \omega_{d}^{a} \right) \wedge \underset{g}{\star} \left(\mathbf{g}_{c} \wedge \mathbf{g}^{d} \right)$$

and that the connection 1-form fields of D (the Levi-Civita connection of g) can be written as:

$$\omega^{\mathrm{cd}} = \frac{1}{2} [\mathfrak{g}^{\mathrm{d}} \, \underset{g}{\lrcorner} \, d\mathfrak{g}^{\mathrm{c}} - \mathfrak{g}^{\mathrm{c}} \, \underset{g}{\lrcorner} \, d\mathfrak{g}^{\mathrm{d}} + \mathfrak{g}^{\mathrm{c}} \, \underset{g}{\lrcorner} (\mathfrak{g}^{\mathrm{d}} \, \underset{g}{\lrcorner} \, d\mathfrak{g}_{\mathrm{a}}) \mathfrak{g}^{\mathrm{a}}].$$

This warrants the equivalence of the equations:

$$\frac{d \star S_{d} + \star t_{g}}{g} = -\star T_{d}, \quad (1) \Leftrightarrow \qquad \overline{\partial \mathcal{F}^{d} = \mathcal{T}^{d} + \mathfrak{t}^{d}} \quad \overline{\partial^{2} \mathfrak{g}^{d} = \mathcal{T}^{d} + \mathfrak{t}^{d}} \quad (14)$$

$$\Leftrightarrow \boxed{(\partial \wedge \partial) \mathfrak{g}^{d} = -\mathcal{T}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \Leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{T}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \Leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{T}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \Leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{T}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \Leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{T}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \Leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d}} \leftrightarrow \boxed{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathfrak{t}^{d} - (\partial \cdot \partial) \mathfrak{g}^{d} \leftrightarrow \underbrace{\mathcal{R}^{d} = -\mathcal{R}^{d} + \mathcal{R}^{d} + \mathcal{R}^{d$$

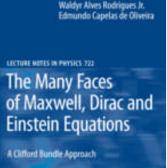
and we have the interesting equation for the energy-momentum 1-forms of the gravitational field

$$\mathbf{t}^{\mathbf{d}} = (\partial \cdot \partial)\mathbf{g}^{\mathbf{d}} + \frac{1}{2}R\mathbf{g}^{\mathbf{d}} . \quad (15)$$

The important lesson we learn from this exercise is that Einstein equations can be written in the structure simlpy as:

$$d \star \mathcal{S}_{d} + \star t_{d} = -\star \mathcal{T}_{d}, \quad (1) \iff d\mathcal{F}^{d} = 0, \quad \delta_{g} \mathcal{F}_{d} = -(\mathcal{T}_{d} + \mathfrak{t}_{d}), \mathcal{F}^{d} = d\mathfrak{g}^{d}$$

where no connection, no curvature, no torsion, is involved.



2 Springer

Energy-Momentum Conservation

• From the Eq.(7b) $(\delta_g \mathcal{F}_d = -(\mathcal{T}_d + \mathfrak{t}_d))$ it follows trivially that

$$\delta_{g}(\mathcal{T}_{d} + \mathbf{t}_{d}) = 0, \quad (16)$$

may be interpreted as a *legitimate energy-momentum conservation law* in a teleparallel structure $\langle M, \nabla, g, \tau_g, \uparrow \rangle$

or in the particular teleparallel structure $\langle M, D, \eta, \tau_{\eta}, \uparrow \rangle$, the Minkowski spacetime structure.

- In any of those structures we can in an obvious way identify all tangent spaces of M. Indeed, if $v_x = v^a(x) e_a |_x \in \sec T_x M$ and $v_y = v^a(y) e_a |_y \in \sec T_y M$ we define the equivalence relation (1) in TM by $v_x = v_y$ if and only if $v^a(x) = v^a(y)$.
- We define $\mathbf{v} = [v_x]$. The set of all \mathbf{v} obtained from all the $v_x \in \sec T_x M$ defines a 4-*d* real vector space V.
- We can take as a basis for V the ordered set $\{E_0, E_1, E_2, E_3\}$ with $E_a = [e_a|_x]$.
- Thus using Eq.(7) and Stokes theorem we can define the total energy-momentum *vector* of the gravitational plus matter fields by:

$$P := P^{d} \boldsymbol{E}_{d}, \qquad P^{d} := -\frac{1}{8\pi} \int_{B} \boldsymbol{\xi}(\mathcal{T}^{d} + \boldsymbol{\mathfrak{t}}^{d}) = \frac{1}{8\pi} \int_{\partial B} \boldsymbol{\xi} \mathcal{F}^{d}.$$
(17)

• Eq.(1) $[d \star_{g} S_{d} + \star_{g} t_{d} = -\star_{g} T_{d}]$, permit us to define an alternative conserved energy-momentum law by:

$$P' \coloneqq P'^{d} \boldsymbol{E}_{d}, \qquad P'^{d} \coloneqq -\frac{1}{8\pi} \int_{B} \mathsf{I}_{g}(\mathcal{T}^{d} + t^{d}) = \frac{1}{8\pi} \int_{\partial B} \mathsf{I}_{g} \mathcal{S}^{d}.$$
(18)

Hamiltonian Formalism

• If we define as usual the canonical momenta associated to the potentials \mathfrak{g}^{a} by $\mathfrak{p}_{a} = \partial \mathcal{L}_{g} / \partial d\mathfrak{g}^{a} = \star \mathcal{S}_{a}$,

and suppose that this equation can be solved for the dg^a as function of the p_a we can introduce a *Legendre transformation* with respect to the fields dg^a by

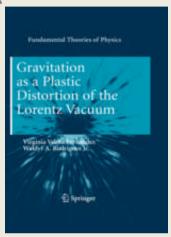
$$\mathbf{L}:(\boldsymbol{\mathfrak{g}}^{\mathrm{a}},\boldsymbol{\mathfrak{p}}_{\mathrm{a}})\mapsto\mathbf{L}(\boldsymbol{\mathfrak{g}}^{\mathrm{a}},\boldsymbol{\mathfrak{p}}_{\mathrm{a}})=d\boldsymbol{\mathfrak{g}}^{\mathrm{a}}\wedge\boldsymbol{\mathfrak{p}}_{\mathrm{a}}-\boldsymbol{\mathcal{L}}_{g}(\boldsymbol{\mathfrak{g}}^{\mathrm{a}},d\boldsymbol{\mathfrak{g}}^{\mathrm{a}}(\boldsymbol{\mathfrak{p}}_{\mathrm{a}}))$$
(19)

Put $\mathfrak{L}_{g}(\mathfrak{g}^{a}, \mathfrak{p}_{a}) := \mathcal{L}_{g}(\mathfrak{g}^{a}, d\mathfrak{g}^{a}(\mathfrak{p}_{a}))$. Observe that defining

$$\delta \mathfrak{L}_{g}(\mathfrak{g}^{a},\mathfrak{p}_{a})/\delta \mathfrak{g}^{a} = -d\mathfrak{p}_{a} - \partial \mathbf{L}/\partial \mathfrak{g}^{a}, \quad \delta \mathfrak{L}_{g}(\mathfrak{g}^{a},\mathfrak{p}_{a})/\delta \mathfrak{p}^{a} = d\mathfrak{g}_{a} - \partial \mathbf{L}/\partial \mathfrak{p}^{a}, \quad (20)$$

we can obtain (details in Gravitation as a Plastic ...)

$$\delta \mathfrak{g}^{a} \wedge \delta \mathcal{L}_{g}(\mathfrak{g}^{a}, d\mathfrak{g}^{a}) = \delta \mathfrak{g}^{a} \wedge (\delta \mathfrak{L}_{g}(\mathfrak{g}^{a}, \mathfrak{p}_{a}) / \delta \mathfrak{g}^{a}) + (\delta \mathfrak{L}_{g}(\mathfrak{g}^{a}, \mathfrak{p}_{a}) / \delta \mathfrak{p}^{a}) \wedge \delta \mathfrak{p}^{a}.$$
(21)



• To define the Hamiltonian form we need something to act the role of time for our manifold, and we choose this "time" to be given by the fow of an arbitrary timelike vector field $\mathbf{Z} \in \sec TM$, such that $g(\mathbf{Z}, \mathbf{Z}) = 1$. Moreover we define $Z = g(\mathbf{Z},) \in \sec \Lambda^1 T^*M \hookrightarrow \mathcal{C}\ell(M, g)$. With this choise the variation δ is generated by the Lie derivative $\mathscr{L}_{\mathbf{Z}}$. Cartan's magical formula and some trick algebra (details in *Gravitation as a Plastic...*)

$$\delta \mathfrak{L}_{g}(\mathfrak{g}^{a},\mathfrak{p}_{a}) = \mathscr{L}_{z}\mathfrak{L}_{g} = d(Z \lrcorner_{g}\mathfrak{L}_{g}) + Z \lrcorner_{g}(d\mathfrak{L}_{g}) = d\mathscr{L}_{z}\mathfrak{g}^{a} \wedge \mathfrak{p}_{a} + \mathscr{L}_{z}\mathfrak{g}^{a} \wedge (\delta\mathfrak{L}_{g} / \delta\mathfrak{g}^{a}) + \mathscr{L}_{z}\mathfrak{p}_{a} \wedge (\delta\mathfrak{L}_{g} / \delta\mathfrak{p}_{a}),$$

and using Eq.(21) we have

$$d(\mathscr{L}_{\mathbf{Z}}\boldsymbol{\mathfrak{g}}^{\mathbf{a}} \wedge \boldsymbol{\mathfrak{p}}_{\mathbf{a}} - Z_{\frac{J}{g}}\boldsymbol{\mathfrak{L}}_{g}) = \mathscr{L}_{\mathbf{Z}}\boldsymbol{\mathfrak{g}}^{\mathbf{a}} \wedge (\partial \boldsymbol{\mathcal{L}}_{g} / \partial \boldsymbol{\mathfrak{g}}^{\mathbf{a}}).$$
(22)

Hamiltonian 3-form:

$$\mathcal{H}(\boldsymbol{\mathfrak{g}}^{\mathrm{a}},\boldsymbol{\mathfrak{p}}_{\mathrm{a}}) \coloneqq \mathscr{L}_{\mathbf{Z}}\boldsymbol{\mathfrak{g}}^{\mathrm{a}} \wedge \boldsymbol{\mathfrak{p}}_{\mathrm{a}} - Z \lrcorner_{g} \mathfrak{L}_{g}.$$
(23)

From Eqs.(22) and (23) we have when the field equations are satisfied $(\partial \mathcal{L}_{g} / \partial g^{a} = 0)$ that $d\mathcal{H} = 0.$

 \blacktriangleright \mathcal{H} is a conserved Noether current.

(24)

Quasi - local Energy

- Write: $\mathcal{H} = Z^{a}\mathcal{H}_{a} + dB$ (25)
- Some algebra shows that: $\mathcal{H}_{a} = -\delta \mathcal{L}_{g} / \delta \mathfrak{g}^{a}, B = Z^{a} \mathfrak{p}_{a}.$ (26)
- Meaning of the boundary term *B*. Consider an arbitrary spacelike surface σ .

$$\mathbf{H} \coloneqq \frac{1}{8\pi} \int_{\sigma} \left(Z^{\mathbf{a}} \mathcal{H}_{\mathbf{a}} + dB \right) \quad (27)$$

► When $-\delta \mathcal{L}_g / \delta \mathfrak{g}^a = 0$, i.e., the field equations are satisfied we are left with the

the quasi-local energy:

$$\mathbf{E} = \frac{1}{8\pi} \int_{\partial \sigma} B \quad . \quad (28)$$

► If $\{e_a\}$ is a basis for *TM* such that $\mathfrak{g}^a(e_b) = \delta_b^a$ and if we choose $Z = e_0$

we get recalling that $\mathbf{p}_{\mathbf{a}} = \mathop{\star}_{g} \mathbf{S}_{\mathbf{a}}$ that: $\mathbf{E} = \frac{1}{8\pi} \int_{\partial \sigma} \mathop{\star}_{g} \mathbf{S}_{0}$, (29)

which we recognize as the same quantity given (when d = 0) by Eq.(18), i.e.,

$$P^{\mathbf{d}} := -\frac{1}{8\pi} \int_{B} \underset{g}{\star} (\mathcal{T}^{\mathbf{d}} + t^{\mathbf{d}}) = \frac{1}{8\pi} \int_{\partial B} \underset{g}{\star} \mathcal{S}^{\mathbf{d}}.$$

Relation with the ADM Energy Concept

- Instead of choosing an arbitrary unit timelike vector field **Z** start with a global timelike vector field $\mathbf{n} \in \sec TM$ such that $n = g(\mathbf{n},) = N^2 dt \in \sec \Lambda^1 T^*M \hookrightarrow \mathcal{C}\ell(M, g)$, where N is the *lapse function*.
- Then, $n \wedge dn = 0$ and Frobenius theorem says that *n* induces a foliation of $M = \mathbb{R} \times \sigma_t$ where σ_t is a spacelike hypersurface σ_t with normal **n**, and $t = x^0$, with $\{x^a = \delta_{\mu}^a x^{\mu}\}$ coordinates in EPL gauge, i.e., $\eta(dx^{\mu}, dx^{\nu}) = \eta^{\mu\nu}$.
- For $A \in \sec \Lambda^1 T^* M \hookrightarrow \mathcal{C}\ell(M, g)$ write $A = \underline{A} + {}^{\perp}A$, with \underline{A} and ${}^{\perp}A$ the tangent and normal components

to
$$\sigma_t$$
. We have: $\underline{A} = n \lrcorner (dt \land A), \ ^{\perp}A = dt \land A_{\perp}, \ A_{\perp} = n \lrcorner A.$ (30)

- Put $\underline{dA} := dt \lrcorner_{g}(n \land dA)$. Cartan's magical formula gives: $\underline{dA} = dt \land (\mathscr{L}_{\underline{n}}\underline{A} \underline{dA}_{\perp}) + \underline{dA}$. (31)
- First fundamental form on σ_t : $m = -g + n \otimes n = \underline{g}^i \otimes \underline{g}_i, n = \frac{n}{N}$. (32) $\underbrace{\star \underline{A} := \star (n \wedge \underline{A})}_{m}$. (33)
- Writting $\mathcal{L}_{g}(\mathfrak{g}^{a}, d\mathfrak{g}^{a}) = dt \wedge \mathcal{K}_{g}(n^{i}, \underline{d}n^{i}, \underline{\mathfrak{g}}^{i}, \underline{d}\mathfrak{g}^{i}, \mathscr{L}_{n}\underline{\mathfrak{g}}^{i}) \Rightarrow \mathcal{H}(\underline{\mathfrak{g}}^{i}, \underline{\mathfrak{p}}_{i}) = \mathscr{L}_{n}\underline{\mathfrak{g}}^{i} \wedge \underbrace{\star}_{m}\underline{\mathfrak{p}}_{i} \mathcal{K}_{g}, \quad (34)$
 - Some (trick) algebra gives $\mathcal{H} = n^{i}\mathcal{H}_{i} + \underline{dB'}, \ \mathcal{H}_{i} = -(\underline{\delta\mathcal{L}_{g}}/\delta\mathfrak{g}^{i}) = -\delta\mathcal{K}_{g}/\delta n^{i}, \ B' = -N\underline{\mathfrak{g}}_{i} \wedge \underbrace{\star}_{m}\underline{d\mathfrak{g}}^{i}, \ (35)$

• When $\delta \mathcal{L}_{g} / \delta \mathbf{g}^{i} = 0$, we get exactly the *ADM* energy $\mathbf{E}_{ADM} \coloneqq -\frac{1}{8\pi} \int_{\partial \sigma_{i}} N \mathbf{g}_{i} \wedge \mathbf$

• Indeed, take $\partial \sigma_t$ a 2-sphere at infinity. Then, $\underline{\mathbf{g}}_i = h_{ij}\underline{d}\mathbf{x}^j$, $h_{ij} - \delta_{ij} \rightarrow 0, N \rightarrow 1$,

$$\underline{\mathbf{g}}_{i} \wedge \underbrace{\mathbf{\pi}}_{m} \underline{d} \underline{\mathbf{g}}^{i}, = h^{ij} (\partial h_{ij} / \partial x^{k} - \partial h_{ik} / \partial x^{j}) \underbrace{\mathbf{\pi}}_{m} \underline{\mathbf{g}}^{k} \text{ and } \left[\mathbf{E}_{ADM} = -\frac{1}{8\pi} \int_{\partial \sigma_{t}} (\partial h_{ij} / \partial x^{k} - \partial h_{ik} / \partial x^{j}) \underbrace{\mathbf{\pi}}_{m} \underline{\mathbf{g}}^{k} \right]$$
(37)

$\mathbf{E}_{ADM} = \mathbf{E}'$ for Isolated Systems

If we choose $n = \mathbf{g}^0$ it may happen that $\mathbf{g}^0 \wedge d\mathbf{g}^0 \neq 0$, and thus it does not determine a spacelike hypersuperface σ_t . However, all algebraic calculations up to Eq.(35) above are valid (and of course $\mathbf{g}^i = \mathbf{g}^i$). So, if we take a spacelike hypersurface σ such that at spatial infinity the e_i ($\mathbf{g}^i(e_j) = \delta_j^i$) are tangent to σ , and $e_0 \rightarrow \partial/\partial t$ is orthogonal to σ , then we have $\mathbf{E}' = \mathbf{E}$ since in this case recalling Eq.(2) for $\mathbf{d} = 0$, i.e.,

$$\star \mathcal{S}_{0} = -\mathfrak{g}_{\mathbf{a}} \wedge \star (\mathfrak{g}_{0} \wedge d\mathfrak{g}^{\mathbf{a}}) + \frac{1}{2}\mathfrak{g}_{0} \wedge \star (d\mathfrak{g}^{\mathbf{a}} \wedge \mathfrak{g}_{\mathbf{a}})$$

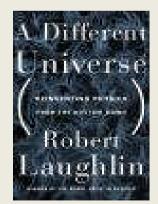
we see that

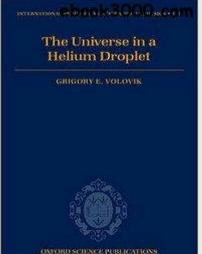
$$-N\underline{\mathfrak{g}}_{\mathbf{i}}\wedge\underline{\star}_{m}\underline{d}\underline{\mathfrak{g}}^{\mathbf{i}}\rightarrow-\mathfrak{g}_{\mathbf{i}}\wedge\underline{\star}_{g}(\mathfrak{g}^{0}\wedge d\mathfrak{g}^{\mathbf{i}})$$
(38)

is the asymptotic value of $\underset{g}{\star} S^{0}$ (taking into account that at spatial infinity $d\mathfrak{g}^{0} = 0$).

Conclusions

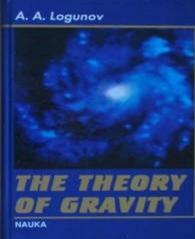
We recalled that a gravitational field generated by a given energymomentum tensor can be represented by distinct geometrical structures and if we prefer, we can even dispense all those geometrical structures and simply represent the gravitational field as a field in the Faraday's sense living in Minkowski spacetime. The explicit Lagrangian density for this theory has been given and the equations of motion presented in a Maxwell like form and shown to be equivalent to Einstein's equations in a precise mathematical sense. We hope that our study clarifies the real difference between mathematical models and physical reality and leads people to think about the real physical nature of the gravitational field (and also of the electromagnetic field as suggested, e.g., by the works of Laughlin and Volikov. We discussed also an Hamiltonian formalism for our theory and the concepts of energy defined by Eq.(29) and the one given by the ADM formalism.

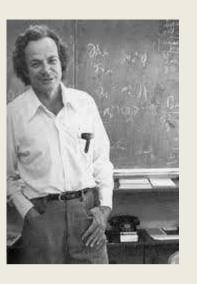


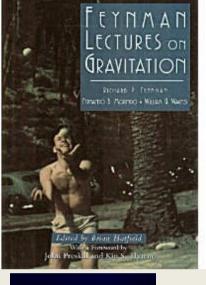


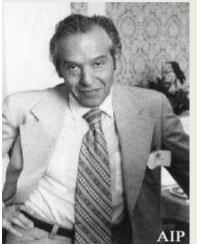
References

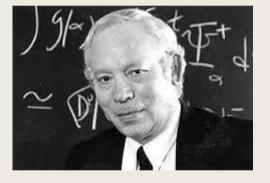
- •Arnowitt, B., Deser, S., and Misner, C. W., The Dynamics of General Relativity, in Witten, L. (ed.), Gravitation, an Introduction to *Current Research*, pp. 227-265, J. Willey & Sons, New York, 1962. [http://arXiv.org/abs/gr-qc/0405109v1]
- •Bohzkov, Y., and Rodrigues, W. A. Jr., Mass and Energy in General Relativity, Gen. Rel. and Grav. 27, 813-819 (1995).
- •Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, Manifolds and Physics (revised edition), North Holland Publ. Co., Amsterdam, 1982.
- Cartan, E., On the Generalization of the Notion of the Curvature of Riemann and spaces with Torsion Comptes Rendus Acad. Sci. vol. 174, 593-595 (1922).
- Clarke, C. J. S., On the Global Isometric Embedding of Pseudo-Riemannian Manifolds, Proc. Roy. Soc. A 314, 417-428 (1970). •de Andrade, V. C., Arcos, H. I., and Pereira, J. G., Torsion as an Alternative to Curvature in the Description of Gravitation, PoS WC, 028 922040, [arXiv:gr-qc/0412034].
- Fernández, V. V., and Rodrigues, W. A. Jr., Gravitation as a Plastic Distortion of the Lorentz Vacuum, Fundamental Theories of Physics 168, Springer, Heidelberg, 2010.
- •Geroch, R. Spinor Structure of Space-Times in General Relativity I, J. Math. Phys. 9, 1739-1744 (1968).
- •Hessenberg, G., Vektorielle Begründung der Differentialgeometrie", Mathematische Annalen 78, 187–217 (1917).
- •Laughlin, R.B., A Different Universe: Reinventing Physics from the Bottom Down, Basic Books, New York, 2005.
- •Meng, F.-F., Quasilocal Center-of-Mass Moment in General Relativity, MSc. thesis, National Central University, Chungli, 2001.[http://thesis.lib.ncu.edu.tw/ETD-db/ETD-search/view etd?URN=89222030]
- •Misner, C. M., Thorne, K. S. and Wheeler, J. A., *Gravitation*, W.H. Freeman and Co. San Francesco, 1973.
- •Notte-Cuello, E. A. and Rodrigues, W. A. Jr., Freud's Identity of Differential Geometry, the Einstein-Hilbert Equations and the Vexatious Problem of the Energy-Momentum Conservation in GR, Adv. Appl. Clifford Algebras 19, 113-145 (2009)
- •Notte-Cuello, E. A., da Rocha, R., and Rodrigues, W. A. Jr., Some Thoughts on Geometries and on the Nature of the Gravitational Field, J. Phys. Math. 2, 20-40 (2010).
- Rodrigues, W.A. Jr. and Capelas de Oliveira, E., The Many Faces of Maxwell, Dirac and Einstein Equations. A Clifford Bundle Approach. Lecture Notes in Physics 722, Springer, Heidelberg, 2007
- •Sachs, R. K., and Wu, H., General Relativity for Mathematicians, Springer-Verlag, New York 1977.
- Volovik, G. E., The Universe in a Helium Droplet, Clarendon Press, Oxford (2003).
- •Szabados, L. B., Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article, Living Reviews in Relativity, [http://www.livingreviews.org/lrr-2004-4]
- •Thirring, W. and Wallner, R., The Use of Exterior Forms in Einstein's Gravitational Theory, *Brazilian J. Phys.* 8, 686-723 (1978). •Wallner, R. P., Asthekar's Variables Reexamined, Phys. Rev. D. 46, 4263-4285 (1992).





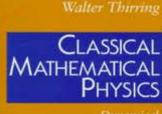






GRAVITATION AND COSMOLOGY INFERENCE ANALYZICANO MANY COSMOLOGY

De Springer



System an Field Theorie

Flund Edition