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One of the basic equations of differential geometry is the 1st Bianchi identity 

(1)         D ∧ Ta = Ra
b ∧ qb . 

In their web note [1] the authors attempt to dualize that identity by claiming the Hodge dual 
of eq.(1) to be 

(1~)         D ∧ Ta~ = Ra
b
~ ∧ qb 

as an up to now unknown further basic equation of differential geometry. 

To prove that new equation (1~) is transformed to the tensorial equation 

(2)         Dμ Tκμν = Rκ
μ

μν 

which is considered to be equivalent to the dualized 1st Bianchi identity (1~). Therefore the 
tensorial  equation  (2)  should  be  valid  for  arbitrary  sample  manifolds  of  Riemannian 
differential geometry.  We'll check this assertion (2) by an elementary example below. The 
reader will find a much deeper treatment of the topic by W.A. Rodrigues Jr. in [4]. 

1. The unit-2-sphere S² in R³

Using some basic information from S.M. Carroll [3] we have the metric 

(1.1)         ds² = dθ² + sin²θ dφ² = dx1 2 + sin² x1 dx2 2 

with the metric tensors 

(1.2)                 (gμν) = diag( 1, sin² x1) ,         (gμν) = diag( 1, 1/sin² x1) . 

using the numbering of indices 

(1.3)         1 ~ θ, 2 ~ φ 

There are only a few non-vanishing Christoffel coefficients 

(1.4)         Γ1
22 = − sin x1 cos x1 ,     Γ2

12 = Γ2
21 = cot x1 , 

while all other Christoffels Γκ
μν vanish. 

http://www.mathematik.tu-darmstadt.de/~bruhn/GCUFT.html


The torsion Tκ is given by 

(1.5)         Tκ
μν = Γκ

μν − Γκ
νμ = 0 , 

i.e. vanishing due to the symmetry of the Christoffels in their lower indices μ,ν. 

2. The Riemann tensor of S²

The Riemann tensor is given by 

(2.1)         Rκ
λμν = ∂μΓκ

λν − ∂νΓκ
λμ + Γκ

μρΓρ
νλ − Γκ

νρΓρ
μλ 

being antisymmetric in μ,ν as is well-known. Therefore we have especially 

(2.3)                 Rκ
λμν = 0     if     μ = ν. 

3. The check

Due to the vanishing of torsion (1.5) the equation (2) to be checked reduces to 

(3.1)         0 = Rκ
μ

μν = Rκ
μαβ gμα gνβ . 

Therefore, due to the diagonal form (1.2) of (gμρ), we have to check: 

(3.2)         (Rκ
11β g11 + Rκ

22β g22) gνβ = (Rκ
111 g11 + Rκ

221 g22) gν1 + (Rκ
112 g11 + Rκ

222 g22) gν2 . 

This is: 

for ν=1:     Rκ
μ

μ1 = (Rκ
111 g11 + Rκ

221 g22) g11 + 0 = (Rκ
111 g11 + Rκ

221 g22) g11 = Rκ
221 g22 g11 , 

for ν=2:     Rκ
μ

μ2 = 0 + (Rκ
112 g11 + Rκ

222 g22) g22 = (Rκ
112 g11 + Rκ

222 g22) g22 = Rκ
112 g11 g22 , 

i.e. the test reduces to: 

(3.3)         Rκ
221 = 0 ?         and         Rκ

112 = 0 ? 

We consider the special case κ = 1 to obtain: 

(3.4)         R1
221 = 0 ?         and         R1

112 = 0 ? 

The check 'R1
221 = 0 ?' means in detail 

(3.5)         R1
221 = ∂2Γ1

21 − ∂1Γ1
22 + (Γ1

21Γ1
12 + Γ1

22Γ2
12) − (Γ1

11Γ1
22 + Γ1

12Γ2
22) = 0 ? 

                                =o                       =o                               =o           =o 

thus 



(3.6)         R1
221 = − ∂1Γ1

22 + Γ1
22Γ2

12 = − sin² x1 ≠ 0 . 
Therefore we have obtained a negative check result: The test equation (2) is not fulfilled for 
the unit-2-sphere S² which means: 

Eq.(2) is invalid in general.

Remark:  Another counter example to eq.(2) is given by the Schwarzschild metric in [2]: 
Sect.1.1.4 gives symmetric Christoffel connection, hence the torsion is zero. However, due to 
Sect.1.1.12 we have Ro

μ
μo ≠ 0, again contradicting eq.(2). 

References

[1] M.W. Evans, H. Eckardt, Violation of the Dual Bianchi Identity by Solutions of the 
Einstein Field Equation
      Violation of the Dual Bianchi Identity 

[2] M.W. Evans, H. Eckardt, Spherically symmetric metric with perturbation a/r
      http://www.atomicprecision.com/blog/wp-filez/a-r.pdf 

[3] S.M. Carroll, Lecture Notes on General Relativity, p.60 f., 
      http://www.mathematik.tu-darmstadt.de/~bruhn/Carroll84-85.bmp 

[4] W.A. Rodrigues Jr., Differential Forms on Riemannian (Lorentzian) and 
      Riemann-Cartan Structures and Some Applications to Physics 
      Ann. Fond. L. de Broglie 32 424-478 (2008)
      http://arxiv.org/pdf/0712.3067 

[5] G.W. Bruhn, Evans' Duality Experiments 
      http://www.mathematik.tu-darmstadt.de/~bruhn/Duality.html 

http://www.mathematik.tu-darmstadt.de/~bruhn/Duality.html
http://arxiv.org/pdf/0712.3067
http://www.mathematik.tu-darmstadt.de/~bruhn/Carroll84-85.bmp
http://www.atomicprecision.com/blog/wp-filez/a-r.pdf
http://www.atomicprecision.com/blog/2008/11/27/criticisms-of-the-einstein-field-equation-3/wp-filez/acriticismsoftheeinsteinfieldequationchapter4.pdf

	On the Hodge dual of the first Bianchi identity 
	Gerhard W. Bruhn, Darmstadt University of Technology
	1. The unit-2-sphere S² in R³
	2. The Riemann tensor of S²
	3. The check
	Eq.(2) is invalid in general.
	References


