On the Hodge dual of the first Bianchi identity

Gerhard W. Bruhn, Darmstadt University of Technology

Dec 3, 2008

One of the basic equations of differential geometry is the 1st Bianchi identity

(1)
$$D \wedge T^a = R^a_{\ b} \wedge q^b$$
.

In their web note [1] the authors attempt to dualize that identity by claiming the Hodge dual of eq.(1) to be

$$(1^{\sim}) \qquad D \wedge T^{a} = R^{a}_{b} \wedge q^{b}$$

as an up to now unknown further basic equation of differential geometry.

To prove that new equation (1^{\sim}) is transformed to the tensorial equation

(2)
$$D_{\mu} T^{\kappa \mu \nu} = R^{\kappa \mu \nu}_{\mu}$$

which is considered to be *equivalent* to the dualized 1st Bianchi identity (1^{\sim}) . Therefore the tensorial equation (2) should be valid for arbitrary sample manifolds of Riemannian differential geometry. We'll check this assertion (2) by an elementary example below. The reader will find a much deeper treatment of the topic by W.A. Rodrigues Jr. in [4].

1. The unit-2-sphere S² in R³

Using some basic information from S.M. Carroll [3] we have the metric

(1.1)
$$ds^2 = d\theta^2 + \sin^2\theta \, d\phi^2 = dx^{12} + \sin^2 x^1 \, dx^{22}$$

with the metric tensors

(1.2)
$$(g_{\mu\nu}) = \text{diag}(1, \sin^2 x^1), \qquad (g^{\mu\nu}) = \text{diag}(1, \frac{1}{\sin^2 x^1}).$$

using the numbering of indices

(1.3)
$$1 \sim \theta, 2 \sim \varphi$$

There are only a few non-vanishing Christoffel coefficients

(1.4)
$$\Gamma_{22}^{1} = -\sin x_{1} \cos x_{1}, \quad \Gamma_{12}^{2} = \Gamma_{21}^{2} = \cot x_{1},$$

while all other Christoffels $\Gamma^{\kappa}_{\mu\nu}$ vanish.

The torsion T^{κ} is given by

(1.5)
$$T^{\kappa}_{\mu\nu} = \Gamma^{\kappa}_{\mu\nu} - \Gamma^{\kappa}_{\nu\mu} = 0,$$

i.e. vanishing due to the symmetry of the Christoffels in their lower indices μ ,v.

2. The Riemann tensor of S²

The Riemann tensor is given by

(2.1)
$$\mathbf{R}^{\kappa}_{\lambda\mu\nu} = \partial_{\mu}\Gamma^{\kappa}_{\lambda\nu} - \partial_{\nu}\Gamma^{\kappa}_{\lambda\mu} + \Gamma^{\kappa}_{\mu\rho}\Gamma^{\rho}_{\nu\lambda} - \Gamma^{\kappa}_{\nu\rho}\Gamma^{\rho}_{\mu\lambda}$$

being antisymmetric in μ , v as is well-known. Therefore we have especially

(2.3)
$$R^{\kappa}_{\lambda\mu\nu} = 0 \quad \text{if} \quad \mu = \nu.$$

3. The check

Due to the vanishing of torsion (1.5) the equation (2) to be checked reduces to

(3.1)
$$0 = R^{\kappa \ \mu\nu}_{\ \mu} = R^{\kappa}_{\ \mu\alpha\beta} g^{\mu\alpha} g^{\nu\beta}.$$

Therefore, due to the diagonal form (1.2) of $(g^{\mu\rho})$, we have to check:

(3.2)
$$(\mathbf{R}^{\kappa}_{11\beta} \, \mathbf{g}^{11} + \mathbf{R}^{\kappa}_{22\beta} \, \mathbf{g}^{22}) \, \mathbf{g}^{\nu\beta} = (\mathbf{R}^{\kappa}_{111} \, \mathbf{g}^{11} + \mathbf{R}^{\kappa}_{221} \, \mathbf{g}^{22}) \, \mathbf{g}^{\nu1} + (\mathbf{R}^{\kappa}_{112} \, \mathbf{g}^{11} + \mathbf{R}^{\kappa}_{222} \, \mathbf{g}^{22}) \, \mathbf{g}^{\nu2} \, .$$

This is:

for v=1:
$$R^{\kappa \mu 1}_{\mu} = (R^{\kappa}_{111} g^{11} + R^{\kappa}_{221} g^{22}) g^{11} + 0 = (R^{\kappa}_{111} g^{11} + R^{\kappa}_{221} g^{22}) g^{11} = R^{\kappa}_{221} g^{22} g^{11}$$
,
for v=2: $R^{\kappa \mu 2}_{\mu} = 0 + (R^{\kappa}_{112} g^{11} + R^{\kappa}_{222} g^{22}) g^{22} = (R^{\kappa}_{112} g^{11} + R^{\kappa}_{222} g^{22}) g^{22} = R^{\kappa}_{112} g^{11} g^{22}$,

i.e. the test reduces to:

(3.3) $R_{221}^{\kappa} = 0$? and $R_{112}^{\kappa} = 0$?

We consider the special case $\kappa = 1$ to obtain:

(3.4)
$$R^{1}_{221} = 0$$
? and $R^{1}_{112} = 0$?

The check $'R_{221}^1 = 0$?' means in detail

(3.5)
$$R^{1}_{221} = \partial_{2}\Gamma^{1}_{21} - \partial_{1}\Gamma^{1}_{22} + (\Gamma^{1}_{21}\Gamma^{1}_{12} + \Gamma^{1}_{22}\Gamma^{2}_{12}) - (\Gamma^{1}_{11}\Gamma^{1}_{22} + \Gamma^{1}_{12}\Gamma^{2}_{22}) = 0 ?$$

=0 =0 =0

thus

(3.6)
$$R^{1}_{221} = -\partial_1 \Gamma^{1}_{22} + \Gamma^{1}_{22} \Gamma^{2}_{12} = -\sin^2 x_1 \neq 0$$
.

Therefore we have obtained a **negative check result**: The test equation (2) is not fulfilled for the unit-2-sphere S^2 which means:

Eq.(2) is invalid in general.

Remark: Another counter example to eq.(2) is given by the Schwarzschild metric in [2]: Sect.1.1.4 gives symmetric Christoffel connection, hence the torsion is zero. However, due to Sect.1.1.12 we have $R^{o}_{\mu}{}^{\mu o} \neq 0$, again contradicting eq.(2).

References

 [1] M.W. Evans, H. Eckardt, Violation of the Dual Bianchi Identity by Solutions of the Einstein Field Equation
<u>Violation of the Dual Bianchi Identity</u>

- [2] M.W. Evans, H. Eckardt, *Spherically symmetric metric with perturbation a/r* http://www.atomicprecision.com/blog/wp-filez/a-r.pdf
- [3] S.M. Carroll, *Lecture Notes on General Relativity*, p.60 f., http://www.mathematik.tu-darmstadt.de/~bruhn/Carroll84-85.bmp
- [4] W.A. Rodrigues Jr., Differential Forms on Riemannian (Lorentzian) and Riemann-Cartan Structures and Some Applications to Physics Ann. Fond. L. de Broglie 32 424-478 (2008) http://arxiv.org/pdf/0712.3067
- [5] G.W. Bruhn, *Evans' Duality Experiments* http://www.mathematik.tu-darmstadt.de/~bruhn/Duality.html