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Abstract. We reveal in a rigorous mathematical way using the theory of dif-
ferential forms, here viewed as sections of a Clifford bundle over a Lorentzian
manifold, the true meaning of Freud’s identity of differential geometry dis-
covered in 1939 (as a generalization of results already obtained by Einstein in
1916) and rediscovered in disguised forms by several people. We show more-
over that contrary to some claims in the literature there is not a single (math-
ematical) inconsistency between Freud’s identity (which is a decomposition
of the Einstein indexed 3-forms ?Ga in two gauge dependent objects) and the
field equations of General Relativity. However, as we show there is an obvious
inconsistency in the way that Freud’s identity is usually applied in the for-
mulation of energy-momentum “conservation laws” in GR. In order for this
paper to be useful for a large class of readers (even those ones making a first
contact with the theory of differential forms) all calculations are done with
all details (disclosing some of the “tricks of the trade” of the subject).
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1. Introduction

In [24, 25, 26, 29, 30] (and in references therein) several criticisms to General
Relativity (GR), continuation of the ones starting in [23], are made. It is argued
there that GR is full of inconsistencies, which moreover are claimed to be solved
by “isogravitation theory” [27, 29, 28]. It is not our intention here to make a
detailed review of the main ideas appearing in the papers just quoted. One of
our purposes here is to prove that a strong claim containing there, namely that
the classical Freud’s identity [8] of differential geometry is incompatible with the
vacuum Einstein-Hilbert field equations of GR is wrong. We take the opportunity
to recall that Freud’s identity is directly related with proposals for the formulation
of an energy-momentum “conservation law”1 in GR [36]. This issue is indeed a
serious and vexatious problem [22] since unfortunately, the proposals appearing in
the literature are full of misconceptions. Some of them we briefly discuss below.2

A sample on the kind of the misconceptions associated to the interpretation of
Freud’s identity (and which served as inspiration for preparing the present paper)
show up when we read3, e.g., in [29] :

“A few historical comments regarding the Freud identity are in order. It has been

popularly believed throughout the 20-th century that the Riemannian geometry possesses

1The reason for the “ ” will become clear soon.
2For more details see [21].
3Please, consult [29] for knowledge of the references mentioned in the quotation below.
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only four identities (see, e.g., Ref. [2h]). In reality, Freud [11b]4 identified in 1939 a fourth

identity that, unfortunately, was not aligned with Einstein’s doctrines and, as such, the

identity was ignored in virtually the entire literature on gravitation of the 20-th century.

However, as repeatedly illustrated by scientific history, structural problems simply

do not disappear with their suppression, and actually grow in time. In fact, the Freud

identity did not escape Pauli who quoted it in a footnote of his celebrated book of 1958

[2g]5. Santilli became aware of the Freud identity via an accurate reading of Pauli’s book

(including its important footnotes) and assumed the Freud identity as the geometric

foundation of the gravitational studies presented in Ref. [7d]. Subsequently, in his ca-

pacity as Editor in Chief of Algebras, Groups and Geometries, Santilli requested the

mathematician Hanno Rund, a known authority in Riemannian geometry [2i], to inspect

the Freud identity for the scope of ascertaining whether the said identity was indeed a

new identity. Rund kindly accepted Santilli’s invitation and released paper [11c] of 1991

(the last paper prior to his departure) in which Rund confirmed indeed the character of

Eqs. (3.10) as a genuine, independent, fourth identity of the Riemannian geometry.

The Freud identity was also rediscovered by Yilmaz (see Ref. [11d]6 and papers

quoted therein) who used the identity for his own broadening of Einstein’s gravitation

via an external stress-energy tensor that is essentially equivalent to the source tensor with

non-null trace of Ref. [11a], Eqs.3.6. Despite these efforts, the presentation of the Freud

identity to various meetings and several personal mailings to colleagues in gravitation, the

Freud identity continues to be main vastly ignored to this day, with very rare exceptions

(the indication by colleagues of additional studies on the Freud identify not quoted herein

would be gratefully appreciated).”

The paper is organized as follows. In Section 2 we present some preliminaries
which fix our notations and serve the purpose to present the Einstein-Hilbert equa-
tions of GR within the theory of differential forms, something that makes trans-
parent the nature of all the objects involved. In Section 3 we recall the Einstein-
Hilbert Lagrangian density LEH and the first order gravitational Lagrangian Lg

and the resulting field equations. In Section 4 we recall that the components of
the “2-forms” ?Sµ (Eq.(34)) differs by7 √−g from the components of the ob-
jects Uρσ

µ (Eq.(113)) defined by Freud. We then explicitly show that there is no
incompatibility between Einstein equations and Freud’s identity which is seen as
a gauge dependent decomposition of the Einstein 3-forms ?Gµ. In Section 5 we
recall a real tragic problem, namely that there are no genuine conservation laws
of energy-momentum (and of course angular momentum) in GR. Now, the details
of the proofs in Section 4 are presented in details in the Appendix C, and as the
reader will see, is an arduous exercise on the algebra and calculus of the theory
of differential forms, mathematical objects which in this paper are supposed to be
sections of the Clifford bundle of differential forms over a Lorentzian manifold. A

4Reference [8] in the present paper.
5Reference [17] in the present paper.
6Reference [42] in the present paper.
7See Eq.(70) for the definition of

√
−g.
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summary of the main results of the Clifford bundle formalism, containing the main
identities necessary for the purposes of the present paper is given in Appendix A.8

2. Preliminaries

A Lorentzian manifold structure is a triple L =(M, g, τg) where M is a real 4-
dimensional manifold (which is Hausdorff, paracompact, connected and non-
compact), equipped with a Lorentzian metric g ∈ sec T 2

0 M and oriented by
τg ∈ sec

∧4
T ∗M .

A spacetime structure is a pentuple M = (M, g, D, τg, ↑) where (M, g, τg) is
a Lorentzian manifold, D is the Levi-Civita connection of g and ↑ is an equivalence
in L defining time orientation.9

It is well known that in Einstein’s General Relativity Theory (GRT) each
gravitational field generated by an energy-momentum density T ∈ sec T 2

0 M is
modelled by an appropriate M [21, 22] .

Once T ∈ sec T 2
0 M is given the field g is determined through Einstein equa-

tion10,

G = Ric− 1
2
gR = −T =T, (1)

where Ric ∈ sec T 2
0 M is the Ricci tensor, R is the curvature scalar and G ∈

sec T 2
0 M is the Einstein tensor.
Let (ϕ, U) be a chart for U ⊂ M with coordinates {xµ}. A coordinate basis

for TU is {∂µ = ∂
∂xµ } and its dual basis (i.e., a basis for T ∗U) is {γµ = dxµ}.

We introduce also an orthonormal basis {ea} for TU and corresponding dual basis
{θa} for T ∗U .

We have
ea = hµ

a∂µ, θa = ha
µdxµ,

ha
µhµ

b = δa
b, ha

νhµ
a = δµ

ν . (2)
The metric field is expressed in those bases as,

g = gµν
γµ ⊗ γν ,

g = ηabθa ⊗ θb, (3)

where the matrix with entries ηab is diag(1,−1,−1,−1).
Next we introduce a metric g∈ sec T 0

2 M on the cotangent bundle by:

g = gµν ∂

∂xµ
⊗ ∂

∂xv
,

g = ηabea ⊗ eb, (4)

where the matrix with entries ηab is diag(1,−1,−1,−1) and gµνgνλ = δµ
λ .

8A detailed presentation of the subject may be found in [21].
9Details may be found, e.g., in [21, 22].
10We use natural units.
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We introduce also the reciprocal basis of {∂µ = ∂
∂xµ } and of {ea} as being

respectively the basis {∂µ} and {ea} for TU such that

g(∂µ, ∂ν) = δν
µ, g(ea, eb) = δb

a , (5)

and the reciprocal basis of {γµ = dxµ} and {θa} as being respectively the basis
{γµ} and {θa} for T ∗U such that

g(γµ,γν) = δν
µ, g(θa,θ

b) = δb
a . (6)

We now observe that Ric, g and T (and of course, also T) can be considered
1-form valued 1-form fields, i.e., we can write

Ric = Rµ ⊗ γµ = Rµ ⊗ γµ = Ra ⊗ θa = Ra ⊗ θa,

g = γµ ⊗ γµ = γµ ⊗ γµ = θa ⊗ θa = θa ⊗ θa,

T = Tµ ⊗ γµ = Tµ ⊗ γµ = Ta ⊗ θa = Ta ⊗ θa, (7)

where the Rµ = Rµνγν ∈ sec
∧1

T ∗M (or the Rµ ∈ sec
∧1

T ∗M or the Ra ∈

sec
∧1

T ∗M or the Ra ∈ sec
∧1

T ∗M ) are called the Ricci 1-form fields and

the Tµ = Tµνγν ∈ sec
∧1

T ∗M (or the Tµ ∈ sec
∧1

T ∗M or the Ta ∈ sec
∧1

T ∗M

or the Ta ∈ sec
∧1

T ∗M ) are called the (negative) energy-momentum 1-form
fields.11

We also introduce the Einstein 1-form fields (Gµ,Gµ,Ga,Ga) by writing the
Einstein tensor as

G = Gµ ⊗ γµ = Gµ ⊗ γµ = Ga ⊗ θa = Ga ⊗ θa, (8)

where, e.g.,

Gµ = Gµνγν , Ga = Gabθb, etc. . . (9)

Gµν = Rµν −
1
2
gµνR. (10)

We now write Einstein equation (Eq.(1)) as a set of equations for the Einstein
1-form fields, i.e.

Gµ = Tµ or Ga = Ta. (11)

We denoted by ? the Hodge dual operator and write the dual of Eq.(11) as

?Gµ = ?Tµ or ? Ga = ?Ta. (12)

11Keep in mind that T = −T µ
ν ∂µ ⊗ γν and T = T µ

ν ∂µ ⊗ γν .
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3. Gravitational Lagragian Densities

As it is well known the Einstein-Hilbert Lagrangian density is

LEH =
1
2

? R =
1
2
Rτg. (13)

We can easily verify that LEH can be written, e.g., as:

LEH =
1
2
Rcd ∧ ?(θc ∧ θd) (14)

where
Rc

d = dωc
d + ωc

k ∧ ωk
d ∈ sec

∧2
T ∗M (15)

are the curvature 2-form fields with each one of the Rc
d being given by

Rc
d =

1
2
R c

dklθ
k ∧ θl, (16)

where R c
dkl are the components of the Riemann tensor in the orthogonal basis and

where the ωc
d := ωc

adθa are the the connection 1-forms in the gauge defined by the
orthonormal bases {ea} and {θa}, i.e., Deaθ

b = −ωb
acθ

c.
We recall that this paper the components of the Ricci tensor are defined

according to the following convention [3, 19]

Ric =R a
dkaθ

d ⊗ θk. (17)

We recall moreover that Eq.(15) is called Cartan’s second structure equation
(valid for an arbitrary connection). Cartan’s first structure equations reads (in an
orthonormal basis) for a torsion free connection, which is the case of a Lorentzian
spacetime

dθa = −ωa
b ∧ θb. (18)

Also, it is not well known as it should be that LEH can be written as12:

LEH = Lg − d(θa ∧ ?dθa) (19)

with13

Lg = −1
2
dθa ∧ ?dθa +

1
2
δθa ∧ ?δθa +

1
4
(dθa ∧ θa) ∧ ?(dθb ∧ θb), (20)

where δ is the Hodge coderivative operator.

12Details may be found in [21].
13An equivalent expression for Lg(θa, dθa) is given in [37]. However the formula there does not

disclose that Lg contains a Yangs-Mill term, a gauge fixing term and an auto interaction term

(in the form of interaction of the vorticities of the fields θa), something that suggests according
to us, a more realistic interpretation of Einstein’s gravitational theory, i.e., as a theory of physical

fields in the Faraday sense living and interacting with all matter fields in Minkowski spacetime

[16].
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Then the total Lagragian for the gravitational plus matter field can be written
as

L = Lg + Lm, (21)
where due to the principle of minimal coupling Lm depends on the matter fields
(represented by some differential forms14) and the θa (due to the use of the Hodge
dual in the writing of Lm).

The variational principle

δ

∫
(LEH + Lm) = 0, (22)

or
δ

∫
(Lg + Lm) = 0, (23)

then must give with the usual hypothesis that the boundary terms are null the
same equations of motion. From Eq.(22) we get supposing that Lm does not depend
explicitly on the dθa (principle of minimal coupling) that∫

δ(LEH + Lm)

=
∫

(δLEH + δθa ∧ ∂Lm

∂θa
). (24)

The result of this variation is (see details in the Appendix B):∫
δ(LEH + Lm) =

∫
δθa ∧ (

δLEH

δθa +
∂Lm

∂θa )

=
∫

δθa ∧ (− ? Ga +
∂Lm

∂θa ) = 0. (25)

and the equations of motion are:

Ra − 1
2
Rθa = −Ta. (26)

In Eq.(26) the Ga =
(
Ra − 1

2Rθa
)
∈ sec

∧1
T ∗M ↪→ C` (T ∗M, g), Ra =

Ra
bθb ∈ sec

∧1
T ∗M ↪→ C` (T ∗M, g), R and the Ta have already been given names.

We moreover have:

?Ta = − ? Ta := −∂Lm

∂θa ∈ sec
∧3

T ∗M, (27)

as the definition of the energy-momentum 3-forms of the matter fields.
We now have an important result, need for one of the purposes of the present

paper.

Theorem. The ?Ga ∈ sec
∧3

T ∗M ↪→ C` (T ∗M, g) can be written:

− ? Ga = d ? Sa + ?ta, (28)

14We emphasize that the present formalism is applicable even to spinor fields, which as proved in

[15, 21] can safely be represented by appropriate classes of non homogeneous differential forms.
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with

?Sc =
1
2
ωab ∧ ?(θa ∧ θb ∧ θc) ∈ sec

∧2
T ∗M (29)

?tc = −1
2
ωab ∧ [ωc

d ∧ ?(θa ∧ θb ∧ θd) + ωb
d ∧ ?(θa ∧ θd ∧ θc)] (30)

∈ sec
∧3

T ∗M.

The ?Sc ∈ sec
∧2

T ∗M are called superpotentials and the ?tc are called the gravi-
tational energy-momentum pseudo 3- forms. The reason for this name is given in
Remark 1.

Proof. To proof the theorem we compute −2 ? Ga as follows:

−2 ? Gd = dωab ∧ ?(θa ∧ θb ∧ θd) + ωac ∧ ωc
b ∧ ?(θa ∧ θb ∧ θd)

= d[ωab ∧ ?(θa ∧ θb ∧ θd)] + ωab ∧ d ? (θa ∧ θb ∧ θd)

+ ωac ∧ ωc
b ∧ ?(θa ∧ θb ∧ θd)

= d[ωab ∧ ?(θa ∧ θb ∧ θd)]− ωab ∧ ωa
p ∧ ?(θp ∧ θb ∧ θd)

− ωab ∧ ωb
p ∧ ?(θa ∧ θp ∧ θd)− ωab ∧ ωd

p ∧ ?(θa ∧ θb ∧ θp)

+ ωac ∧ ωc
b ∧ ?(θa ∧ θb ∧ θd)

= d[ωab ∧ ?(θa ∧ θb ∧ θd)]− ωab ∧ [ωd
p ∧ ?(θa ∧ θb ∧ θp)

+ ωb
p ∧ ?(θa ∧ θp ∧ θd)]

= 2(d ? Sd + ?td). (31)

�

So, we just showed that Einstein equations can be written in the suggestive
form:

−d ? Sa = (?Ta + ?ta), (32)

which implies the differential conservation law d(?Ta + ?ta) = 0, to be scrutinized
below. We start, with the

Remark 1. The ?ta are not true index 3-forms [21], i.e., there do not exist a tensor
field t ∈ sec T 3

1 M such that for vi ∈ sec TM , i = 1, 2, 3,

t(v1, v2, v3,θ
a) = ?ta(v1, v2, v3). (33)

We can immediately understand why this is the case, if we recall the dependence
of the ?ta on the connection 1-forms and that these objects are gauge dependent
and thus do not transform homogeneously under a change of orthonormal frame.
Equivalently, the set tcd (tc = tcdθd) for c,d = 0, 1, 2, 3 are not the components
of a tensor field. So, these components are said to define a pseudo-tensor.

The ?Sa also are not true index forms for the same reason as the ?ta, they
are gauge dependent.
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Remark 2. Eq.(32) is known in recent literature of GR as Sparling equations [34]
because it appears (in an equivalent form) in a preprint [32] of 1982 by that author.
However, it already appeared early, e.g., in a 1978 paper by Thirring and Wallner
[35].

Remark 3. We emphasize that if we had used a coordinate basis we would get
analogous equations, i.e.

−d ? Sρ = (?Tρ + ?tρ), (34)

?Sρ =
1
2
Γαβ ∧ ?(γα ∧ γβ ∧ γρ) ∈ sec

∧2
T ∗M

?tρ = −1
2
Γαβ ∧ [Γρ

σ ∧ ?(γα ∧ γβ ∧ γσ) + Γβ
σ ∧ ?(γα ∧ γρ ∧ γσ)] (35)

∈ sec
∧3

T ∗M,

with the 1-form of connections given by Γρ
σ := Γρ

ασγα, D∂σ
γρ = −Γρ

ασγα.
Note that Eq.(34), e.g., shows that each one of the 2-form fields ?Sµ (the

superpotentials) is only defined modulo a closed 2-form ?Nµ, d ? Nµ = 0.

Remark 4. The use of a pseudo-tensor to express the conservation law of energy-
momentum of matter plus the gravitational field appeared in a 1916 paper by
Einstein [5]. His pseudo-tensor which has been originally presented in a coordinate
basis is identified (using the works of [13] and [36]) in the Appendix D. We show
that Einstein’s superpotentials are the Freud’s “2 -forms” ?Uλ (Eq.(127 )).

Remark 5. We now turn to δ

∫
(Lg + Lm) = 0. We immediately get

∫
δθa ∧

[
∂Lg

∂θa
+ d

(
∂Lg

∂dθa

)
+

∂Lm

∂θa

]
. (36)

The computation of ∂Lg

∂θa
and d

(
∂Lg

∂dθa

)
is a very long one and will not be given in

this paper. However, of course, we get:

− ? Ga =
∂Lg

∂θa
+ d

(
∂Lg

∂dθa

)
= ?t

g

a + d ? S
g

a = − ? Ta, (37)

and a detailed calculation (see details in [21]) gives:

?S
g

a =
∂Lg

∂dθa
= ?Sa,

?t
g

a =
∂Lg

∂θa
. = ?ta. (38)
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4. Freud’s Identity

To compute the components of the Sµ = 1
2S

νρ
µ γν ∧ γρ ∈ sec

∧2
T ∗M is a trick

exercise on the algebra of differential forms. For that reason we give the details
in the Appendix C, where using the techniques of Clifford bundle formalism we
found directly that

Sλρ
µ =

1
2

det

 δλ
µ δσ

µ δι
µ

gλκ gσκ gικ

Γλ
κι Γσ

κι Γι
ικ

 , (39)

which we moreover show to be equivalent to15

Sνρ
µ =

1
2
√
−g

gµσ∂β(gνβgσρ − gρβgσν), (40)

with the definition of gµσ and gνβ given in Eq.(114) and g in Eq.(70) (Appendix
A.1.1).

From Eq.(39) we immediately see (from the last formula in Freud’s paper [8])
that the object that he called Uνρ

µ must be identified with

Uνρ
µ =

√
−gSνρ

µ , (41)

and the one he called Uν
µ (Eq.(1) of [8]) is

Uν
µ =

∂

∂xρ
Uνρ

µ . (42)

The Uνρ
µ are the superpotentials appearing in Freud’s classical paper and, of

course,
∂

∂xν
Uν

µ = 0. (43)

With the above identifications we verified in the Appendix that the identity derived
above (see Eq.(37))

Gι = −tι − ?−1d ? Sι (44)

is equivalent to

2Uι
κ = δι

κ{
√
−g[R + gµν

(
Γρ

µσΓσ
ρν − Γρ

µνΓσ
ρσ

)
]} − 2

√
−gRι

κ

+
(
Γι

µν∂κ(
√
−ggµν)− Γν

µν∂κ(
√
−ggµι)

)
, (45)

which is Eq.(8) in Freud’s paper (Freud’s identity) [8].

In several papers and books [25, 26, 29, 30, 28] Santilli claims that Ein-
stein’s gravitation in vacuum (Gµ

ν = 0) is incompatible with the Freud identity of
Riemannian geometry.

To endorse his claim, first Santilli printed a version of Freud’s identity, i.e.,
his Eq.(3.10) in [30] (or in Eq.(1.4.10) in [29]) with a missing term, as we now

15We observe that Eq.(40) has also been found, e.g., in [35, 36].
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show. Indeed, putting Rι
κ =

√
−gRι

κ, R =
√
−gR and recalling the definition of

L in Eq.(134), we can rewrite Eq.(45) as:

Rι
κ −

1
2
δι
κR− 1

2
δι
κL

=
1
2
(Γι

µν∂κgµν − Γν
µν∂κgµι)− Uι

κ, (46)

Now, we can easily verify the identity16:
1
2
(Γι

µν∂κgµν − Γν
µν∂κgµι) = −1

2
∂L

∂(∂ιgµν)
∂κgµν , (47)

which permits us to write

Rι
κ −

1
2
δι
κR− 1

2
δι
κL

= −1
2

∂L

∂(∂ιgµν)
∂κgµν − Uι

κ. (48)

This equation can also be written, (with L =
√
−gΘ):

Rι
κ −

1
2
δι
κR− 1

2
δι
κΘ

= − 1
2
√
−g

∂L

∂(∂ιgµν)
∂κgµν +

1√
−g

∂

∂xρ
(
√
−gSιρ

κ ), (49)

and since
√
−g does not depend on the ∂κgµν and ∂ρ

√
−g = Γσ

ρσ

√
−g we can still

write:

Rι
κ −

1
2
δι
κR− 1

2
δι
κΘ

= −1
2

∂Θ
∂(∂ιgµν)

∂κgµν +
∂

∂xρ
Sιρ

κ

+ Sιρ
κ Γσ

ρσ, (50)

where Sνρ
µ is given by Eq.(113). Eq.(50) can now be compared with Eq.(3.10) of

[30] (or with Eq.(1.4.10) in [29]) and we see that the last term, namely Sιρ
κ Γσ

ρσ is
missing there17.

But leaving aside this “misprint”, we then read, e.g., in [29] that:
“Therefore, the Freud identity requires two first order source tensors for the ex-

terior gravitational problems in vacuum, as in Eq.(3.6.) of Ref.[1]18. These terms are

absent in Einstein’s gravitation (1.4.1.)19 that consequently, violates the Freud identity

of Riemannian geometry”.

First we must comment, that contrary to Santilli’s statement, the two terms
on the right member of Eq.(49) are not tensor fields, for indeed, from what has

16See page 70 of [17].
17However, the equation printed in [25] is correct.
18Ref. [1] is the reference [25] in the present paper.
19Eq.(1.4.1) in [29] is Einstein’s field equation without source, i.e., Gµν = 0.
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been said above and taking into account Eq.(37) we know that Freud’s identity is
simply the component version of a decomposition of the Einstein 3-form fields ?Gµ

in two parts (one of then an exact differential), which however are not indexed
forms, and thus are gauge dependent objects. Second, it is necessary to become
clear once and for ever that when ?Tµ = 0, we simply have −?Gµ = d?Sµ +?tµ =
0., which is equivalent (Eq.(50) to:

Rι
κ −

1
2
δι
κR = −Uι

κ +
1
2

(
δι
κL− ∂L

∂(∂ιgµν)
∂κgµν

)
= 0. (51)

What can be inferred from this equation is simply that the Ricci tensor of the
“exterior” problem is null.20 And that is all, there is no inconsistency between
Einstein gravity, the Einstein-Hilbert field equations and Freud’s identity.

Remark 6. The fact that some people became confused during decades with
Freud’s identity and its real meaning [1, 29, 30, 40, 41, 42] may certainly be
attributed to the use of the classical tensor calculus which, sometimes hides obvious
things for a long time. That identity, contrary to the hopes of [1, 40, 41, 42]
does not give a solution for the energy-momentum problem in GR, even if we
introduce explicitly an energy-momentum tensor for the gravitational field, while
maintaining that spacetime is a Lorentzian manifold. The root of the problem
for non existence of an energy-momentum conservation law consists in the obvious
fact that in GR there is not even sense to talk about the total energy momentum of
particles following different worldlines. The reason is crystal clear: in any manifold
not equipped with a teleparallel connection (as it is the case of a general Lorentzian
manifold, with non zero curvature tensor), we cannot add vectors belonging to the
tangent spaces at different spacetime points. The problem of finding an energy-
momentum conservation law for matter fields in GR can be solved only in a few
special cases, namely when there exists appropriate Killing vector fields in the
Lorentzian manifold representing the gravitational field which the matters fields
generate and where they live (see, details, e.g., in [20]).

Remark 7. We would also like to call the reader‘s attention to the fact that in [25]
the quantity appearing in Definition II.11.3,

Rι
κ −

1
2
δι
κR− 1

2
δι
κΘ, (52)

is called the “completed Einstein tensor”, and it is stated that its covariant de-
rivative is null. This statement is wrong since the object given by Eq.(52) is not
a tensor. Indeed although the two first terms define the Einstein tensor the term
1
2δι

κΘ is not a a tensor field. We observe that already in 1916 Einstein at page 171
of the English translation of [6] explicitly said that Θ is an invariant only with
respect to linear transformations of coordinates, i.e., it is not a scalar function in
the manifold. Moreover, in a paper published in 1917 Levi-Civita, explicitly stated

20We are not going to discuss here if the exterior problem with a zero source term is a physically

valid problem. We are convinced that it is not, but certainly Santilli’s proposed solution for that

problem inferred from his use of Freud’s identity is not the answer to that important issue.
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that Θ is not a scalar invariant [12] (see also [31])21. And, since 1
2δι

κΘ is not a ten-
sor field there is no meaning in taking its covariant derivative, and consequently
Corollary II.11.2.1 in [25] is false.

5. Freud’s Identity and the Energy-Momentum “Conservation
Law” of GR

We already comment that Freud’s identity through Eq.(32) (or Eq.(34)) suggests
that we have found a conservation law for the energy-momentum of matter plus
the gravitational field in GR. Indeed, from Eq.(34), it follows that

d(?Tµ + ?tµ) = 0. (53)

However, this is simply a wishful thinking, since the ?tµ are gauge dependent
quantities and that fact implies that one of the definitions of the “inertial” mass
of the source, in GR given by [35]

mI = −
∫

V

? (T0 + t0) =
∫

∂V

? S0 (54)

takes a value that depends on the coordinate system that we choose to make the
computation.

In truth, Eq.(54), printed in many papers and books results from a naive
use of Stokes theorem. Indeed, such a theorem is valid one for the integration of
true differential forms (under well known conditions). If we recall the well known
definition of the integral of a differential form [3, 7] we see that a coordinate
free result depends fundamentally on the fact that the differential form being
integrated defines a true tensor. However, as already mentioned in Remark 1,
the ?Sµ are not true indexed forms, and so their integration will be certainly
coordinate dependent [2]. In Appendix C for completeness and hoping that the
present paper may be of some utility for people trying to understand this issue,
we find also from our formalism the so called Einstein and the Landau-Lifshitz
“inertial” masses (concepts which have the same problems as the one defined in
Eq.(54)).

The problem just discussed is a really serious one if we take GR as a valid
theory of the gravitational field, for it means that in that theory there are no
conservation laws of energy-momentum (and also of angular momentum) despite
almost 100 years of hard work by several people 22. And, at this point it is better
to quote page 98 of Sachs & Wu [22]:

21By the way, a proof that Θ is not a scalar is as follows. Calculate its value at a given point

spacetime point using arbitrary coordinates. You get in general that Θ is non null (you can verify

this with an example, e.g., using the Schwarzschild in standard coordinates). Next introduce Rie-
mann normal coordinates covering that spacetime point. Using these coordinates all connection

are zero at that point and then the evaluation of Θ now gives zero.
22A detailed discussion of conservation laws in a general Riemann-Cartan spacetime is given [20].
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“ As mentioned in section 3.8, conservation laws have a great predictive power. It

is a shame to lose the special relativistic total energy conservation law (Section 3.10.2)

in general relativity. Many of the attempts to resurrect it are quite interesting; many are

simply garbage.”

6. Conclusions

In this paper we proved that contrary to the claim in [29, 30], there is no in-
compatibility from the mathematical point of view between Freud’s identity and
Einstein-Hilbert field equations of GR, both in vacuum and inside matter. Freud’s
identity, or disguised versions of it, have been used by several people during all
XXth century to try to give a meaning to conservation laws of energy-momentum
and angular momentum in GR. These efforts unfortunately resulted in no success,
of course, because Freud’s identity involves the use of pseudo-tensors (something
that is absolutely obvious in our presentation), and thus gives global quantities
(i.e., the result of integrals) depending of the coordinate chart used (see also Ap-
pendices D and E). This is a serious and vexatious problem that we believe, will
need a radical change of paradigm to be solved23. As discussed in, e.g., [16, 21]
a possible solution (maintaining the Einstein-Hilbert equations in an appropriate
form) can be given with the gravitational field interpreted as field in Faraday sense
living in Minkowski spacetime (or other background spacetime equipped with ab-
solute parallelism)24. The geometrical interpretation of gravitation as “geometry
of spacetime” is a simple coincidence [16, 38], which we may bevalid only to a
certain degree of approximation.

Appendix A. Clifford Bundle Formalism

Let M = (M, g, D, τg, ↑) be an arbitrary Lorentzian spacetime. The quadruple
(M, g, τg, ↑) denotes a four-dimensional time-oriented and space-oriented Lorentz-
ian manifold [21, 22]. This means that g ∈ sec T 0

2 M is a Lorentzian metric of
signature (1,3), τg ∈ sec

∧
4T ∗M and ↑ is a time-orientation (see details, e.g., in

[22]). Here, T ∗M [TM ] is the cotangent [tangent] bundle. T ∗M = ∪x∈MT ∗x M ,

23Using the asymptotic flatness notions, first introduced by Penrose [18], it is possible, for some
“isolated systems”, to introduce the ADM and the Bondi masses. It is even possible to prove
that the Bondi mass is positive [39]. But even if the notion of Bondi mass is considered by

many a good solution to the energy-problem in GR, the fact is that it did not solve the problem
in principle. It is only a calculational device. A good introduction to the notions asymptopita,

ADM and Bondi masses can be found in [33].
24Recently Gorelik proposed in an interesting paper [9] to use the quasi Poincaré group of a
Riemannian space as the generator of the Noether symmetries leading to conservation laws of

“energy-momentum”, angular momentum and “center of mass motion”. A need comment on this

approach that do not involve the use of the Freud’s identity will be presented somewhere.
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TM = ∪x∈MTxM , and TxM ' T ∗x M ' R1,3, where R1,3 is the Minkowski vec-
tor space25. D is the Levi-Civita connection of g, i.e., it is a metric compatible
connection, which implies Dg = 0. In general, R = RD 6= 0, Θ = ΘD = 0,
R and Θ being respectively the curvature and torsion tensors of the connection.
Minkowski spacetime is the particular case of a Lorentzian spacetime for which
R = 0, Θ = 0, and M ' R4. Let g ∈ sec T 2

0 M be the metric of the cotangent bun-
dle. The Clifford bundle of differential forms C̀ (M, g) is the bundle of algebras,
i.e., C`(M, g) = ∪x∈M C̀ (T ∗x M, g), where ∀x ∈ M , C̀ (T ∗x M, g) = R1,3, the so called
spacetime algebra [21]. Recall also that C̀ (M, g) is a vector bundle associated to
the orthonormal frame bundle, i.e., C̀ (M, g) = PSOe

(1,3)
(M)×Ad Cl1,3 [10, 15]. For

any x ∈ M , C̀ (T ∗x M, g|x) as a linear space over the real field R is isomorphic
to the Cartan algebra

∧
T ∗x M of the cotangent space.

∧
T ∗x M = ⊕4

k=0

∧k
T ∗x M ,

where
∧k

T ∗x M is the
(
4
k

)
-dimensional space of k-forms. Then, sections of C̀ (M, g)

can be represented as a sum of non homogeneous differential forms, that will be
called Clifford (multiform) fields. In the Clifford bundle formalism, of course, ar-
bitrary basis can be used (see remark below), but in this short review of the main
ideas of the Clifford calculus we use orthonormal basis. Let then {ea} be an or-
thonormal basis for TU ⊂ TM , i.e., g(ea, ea) = ηab = diag(1,−1,−1,−1). Let
θa ∈ sec

∧1
T ∗M ↪→ sec C̀ (M, g) (a = 0, 1, 2, 3) be such that the set {θa} is the

dual basis of {ea}.

A.1. Clifford Product

The fundamental Clifford product (in what follows to be denoted by juxtaposition
of symbols) is generated by

θaθb + θbθa = 2ηab (55)

and if C ∈ sec C`(M, g) we have

C = s + va
aθ +

1
2!

fabθaθb +
1
3!

tabcθ
aθbθc + pθ5 , (56)

where τg = θ5 = θ0θ1θ2θ3 is the volume element and s, va, fab, tabc, p ∈
sec

∧0
T ∗M ↪→ sec C̀ (M, g).

For Ar ∈ sec
∧r

T ∗M ↪→ sec C̀ (M, g), Bs ∈ sec
∧s

T ∗M ↪→ sec C̀ (M, g) we
define the exterior product in C̀ (M, g) (∀r, s = 0, 1, 2, 3) by

Ar ∧Bs = 〈ArBs〉r+s, (57)

where 〈 〉k is the component in
∧k

T ∗M of the Clifford field. Of course, Ar∧Bs =
(−1)rsBs ∧Ar, and the exterior product is extended by linearity to all sections of
C̀ (M, g).

Let Ar ∈ sec
∧r

T ∗M ↪→ sec C̀ (M, g), Bs ∈ sec
∧s

T ∗M ↪→ sec C̀ (M, g). We
define a scalar product in C̀ (M, g) (denoted by ·) as follows:

25Not to be confused with Minkowski spacetime [22].
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(i) For a, b ∈ sec
∧1

T ∗M ↪→ sec C̀ (M, g),

a · b =
1
2
(ab + ba) = g(a, b). (58)

(ii) For Ar = a1 ∧ . . . ∧ ar, Br = b1 ∧ . . . ∧ br, ai, bj ∈ sec
∧1

T ∗M ↪→
sec C̀ (M, g), i, j = 1, . . . , r,

Ar ·Br = (a1 ∧ . . . ∧ ar) · (b1 ∧ . . . ∧ br)

=

∣∣∣∣∣∣
a1 · b1 . . . a1 · br

. . . . . . . . . . . . . . .
ar · b1 . . . ar · br

∣∣∣∣∣∣ . (59)

We agree that if r = s = 0, the scalar product is simply the ordinary product
in the real field.

Also, if r 6= s, then Ar · Bs = 0. Finally, the scalar product is extended by
linearity for all sections of C̀ (M, g).

For r ≤ s, Ar = a1∧ . . .∧ar, Bs = b1∧ . . .∧ bs , we define the left contraction
y : (Ar, Bs) 7→ AryBs by

AryBs =
∑

i1 <... <ir

εi1...is(a1 ∧ . . . ∧ ar) · (bi1
∧ . . . ∧ bir

)∼bir+1 ∧ . . . ∧ bis
(60)

where ∼ is the reverse mapping (reversion) defined by

˜ : sec C̀ (M, g) → sec C̀ (M, g),

Ã =
4∑

p=0

Ãp =
4∑

p=0

(−1)
1
2 k(k−1)Ap,

Ap ∈ sec
∧p

T ∗M ↪→ sec C̀ (M, g). (61)

We agree that for α, β ∈ sec
∧0

T ∗M the contraction is the ordinary (pointwise)
product in the real field and that if α ∈ sec

∧0
T ∗M , Ar ∈ sec

∧r
T ∗M,Bs ∈

sec
∧s

T ∗M ↪→ sec C̀ (M, g) then (αAr)yBs = Ary(αBs). Left contraction is ex-
tended by linearity to all pairs of sections of C̀ (M, g), i.e., for A,B ∈ sec C̀ (M, g)

AyB =
∑
r,s

〈A〉ry〈B〉s, r ≤ s. (62)

It is also necessary to introduce the operator of right contraction denoted
by x. The definition is obtained from the one presenting the left contraction with
the imposition that r ≥ s and taking into account that now if Ar ∈ sec

∧r
T ∗M,

Bs ∈ sec
∧s

T ∗M then Arx(αBs) = (αAr)xBs. See also the third formula in
Eq.(63).
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The main formulas used in this paper can be obtained from the following
ones

aBs = ayBs + a ∧ Bs, Bsa = Bsxa + Bs ∧ a,

ayBs =
1
2
(aBs − (−1)sBsa),

AryBs = (−1)r(s−r)BsxAr,

a ∧ Bs =
1
2
(aBs + (−1)sBsa),

ArBs = 〈ArBs〉|r−s| + 〈ArBs〉|r−s|+2 + . . . + 〈ArBs〉|r+s|

=
m∑

k=0

〈ArBs〉|r−s|+2k

Ar · Br = Br · Ar = Ãr yBr = ArxB̃r = 〈ÃrBr〉0 = 〈ArB̃r〉0. (63)

Two other important identities to be used below are:

ay(X ∧ Y) = (ayX ) ∧ Y + X̂ ∧ (ayY), (64)

for any a ∈ sec
∧1

T ∗M and X ,Y ∈ sec
∧

T ∗M , and

Ay(ByC) = (A ∧B)yC, (65)

for any A,B,C ∈ sec
∧

T ∗M ↪→ C`(M, g).

A.1.1. Hodge Star Operator. Let ? be the Hodge star operator, i.e., the mapping

? :
∧k

T ∗M →
∧4−k

T ∗M, Ak 7→ ?Ak (66)

where for Ak ∈ sec
∧k

T ∗M ↪→ sec C̀ (M, g)

[Bk ·Ak]τg = Bk ∧ ?Ak,∀Bk ∈ sec
∧k

T ∗M ↪→ sec C̀ (M, g). (67)

τg = θ5 ∈ sec
∧4

T ∗M ↪→ sec C̀ (M, g) is a standard volume element. Then we can
easily verify that

?Ak = Ãkτg = Ãkyτg. (68)

where as noted before, in this paper Ãk denotes the reverse of Ak. Eq.(68) permits
calculation of Hodge duals very easily in an orthonormal basis for which τg = θ5.
Let {ϑα} be the dual basis of {eα} (i.e., it is a basis for T ∗U ≡

∧1
T ∗U) which

is either orthonormal or a coordinate basis. Then writing g(ϑα, ϑβ) = gαβ , with
gαβgαρ = δβ

ρ , and ϑµ1...µp = ϑµ1 ∧ . . . ∧ ϑµp , ϑνp+1...νn = ϑνp+1 ∧ . . . ∧ ϑνn we have
from Eq.(68)

? θµ1...µp =
1

(n− p)!

√
|g|gµ1ν1 . . . gµpνpεν1...νn

ϑνp+1...νn . (69)

where g denotes the determinant of the matrix with entries gαβ = g(eα, eβ), i.e.,

g = det[gαβ ]. (70)
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We also define the inverse ?−1 of the Hodge dual operator, such that ?−1? =
??−1 = 1. It is given by:

?−1 : sec
∧n−r

T ∗M → sec
∧r

T ∗M,

?−1 = (−1)r(n−r)sgn g ?, (71)

where sgn g = g/|g| denotes the sign of the determinant g.
Some useful identities (used several times below) involving the Hodge star

operator, the exterior product and contractions are:

Ar ∧ ?Bs = Bs ∧ ?Ar; r = s
Ar · ?Bs = Bs · ?Ar; r + s = n

Ar ∧ ?Bs = (−1)r(s−1) ? (ÃryBs); r ≤ s

Ary ? Bs = (−1)rs ? (Ãr ∧Bs); r + s ≤ n
?τg = sign g; ?1 = τg.

(72)

A.1.2. Dirac Operator Associated to a Levi-Civita Connection. Let d and δ be
respectively the differential and Hodge codifferential operators acting on sections
of C̀ (M, g). If Ap ∈ sec

∧p
T ∗M ↪→ sec C̀ (M, g), then δAp = (−1)p ?−1 d ? Ap.

The Dirac operator acting on sections of C̀ (M, g) associated with the metric
compatible connection D is the invariant first order differential operator

∂ = θaDea , (73)

where {ea} is an arbitrary orthonormal basis for TU ⊂ TM and {θb} is a basis
for T ∗U ⊂ T ∗M dual to the basis {ea}, i.e., θb(ea) = δa

b, a,b = 0, 1, 2, 3. The
reciprocal basis of {θb} is denoted {θa} and we have θa · θb = ηab. Also,

Deaθ
b = −ωbc

a θc (74)

and we write the connection 1-forms in the orthogonal gauge as

ωa
b := ωa

cbθc. (75)

Moreover, we introduce the objects ωea ∈ sec
∧2

T ∗M,

ωea =
1
2
ωbc

a θb ∧ θc. (76)

Then, for any Ap ∈ sec
∧p

T ∗M, p = 0, 1, 2, 3, 4 we can write

DeaAp = ∂eaAp +
1
2
[ωea , Ap], (77)

where ∂ea is the Pfaff derivative, i.e., if Ap = 1
p!Ai1...ipθi1...ip ,

∂eaAp :=
1
p!

ea(Ai1...ip)θi1...ip . (78)

Eq.(77) is an important formula which is also valid for a nonhomogeneous
A ∈ sec C`(M, g). It is proved, e.g., in [15, 21].
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We have also the important result:

∂Ap = ∂ ∧Ap + ∂yAp = dAp − δAp,

∂ ∧Ap = dAp, ∂yAp = −δAp. (79)

Remark 8. We conclude this section by emphasizing that the formalism just pre-
sented is valid in an arbitrary coordinate basis {∂µ} of TU ⊂ TM associated to
local coordinates {xµ} covering U . In this case if {θµ = dxµ} is the dual basis of
{∂µ} we write

D∂µ
∂ν = Γρ

µν∂ρ D∂µ
γβ = −Γβ

µαγα. (80)

We also write the connection 1-forms in a coordinate gauge as:

Γα
β := Γα

µβθµ. (81)

A.2. Algebraic Derivatives of Functionals

Let X ∈ sec
∧p

T ∗M . A functional F is a mapping

F : sec
∧p

T ∗M → sec
∧r

T ∗M.

When no confusion arises we use a sloppy notation and denote the image F (X) ∈
sec

∧r
T ∗M simply by F , or vice versa. Which object we are talking about is

always obvious from the context of the equations where they appear.
Let also δX ∈ sec

∧p
T ∗M . We define the variation of F as the functional

δF ∈ sec
∧r

T ∗M given by

δF = lim
λ→0

F (X + λδX)− F (X)
λ

. (82)

Moreover, we define the algebraic derivative of F (X) relative to X , denoted ∂F
∂X

by:

δF = δX ∧ ∂F

∂X
. (83)

Moreover, given F : sec
∧p

T ∗M → sec
∧r

T ∗M , G : sec
∧p

T ∗M → sec
∧s

T ∗M

the variation δ satisfies

δ(F ∧G) = δF ∧G + F ∧ δG, (84)

and the algebraic derivative satisfies (as it is trivial to verify)

∂

∂X
(F ∧G) =

∂F

∂X
∧G + (−1)rpF ∧ ∂G

∂X
. (85)

An important property of δ is that it commutes with the exterior derivative
operator d, i.e., for any given functional F

dδF = δdF. (86)
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In general we may have functionals depending on several different forms fields, say,
F (X, Y ) ∈ sec

∧r
T ∗M , and X ∈ sec

∧p
T ∗M , Y ∈ sec

∧q
T ∗M . In this case we

have (using sloop notation):

δF = δX ∧ ∂F

∂X
+ δY ∧ ∂F

∂Y
. (87)

An important case happens for a functional F such that F (X, dX) ∈ sec
∧n

T ∗M

where n = dim M is the manifold dimension. In this case, for U ⊂ M , we can
write supposing that the variation δX is chosen to be null in the boundary ∂U
(or that ∂F

∂dX

∣∣
∂U

= 0) and taking into account Stokes theorem,

δ

∫
U

F :=
∫

U

δF =
∫

U

δX ∧ ∂F

∂X
+ δdX ∧ ∂F

∂dX

=
∫

U

δX ∧
[

∂F

∂X
− (−1)pd

(
∂F

∂dX

)]
+ d

(
δX ∧ ∂F

∂dX

)
=

∫
U

δX ∧
[

∂F

∂X
− (−1)pd

(
∂F

∂dX

)]
+

∫
∂U

δX ∧ ∂F

∂dX

=
∫

U

δX ∧ δF

δX
, (88)

where δ
δX

F (X, dX) ∈ sec
∧n−p

T ∗M is called the functional derivative of F and
we have:

δF

δX
=

∂F

∂X
− (−1)pd

(
∂F

∂dX

)
. (89)

When F = L is a Lagrangian density in field theory δL
δX

is called the Euler-
Lagrange functional.26

Appendix B. Variation of the Einstein-Hilbert Lagrangian Density
LEH

We have from LEH = 1
2Rcd ∧ ?(θc ∧ θd),

δLEH =
1
2
δ[Rcd ∧ ?(θc ∧ θd)]

=
1
2
δRcd ∧ ?(θc ∧ θd) +

1
2
Rcd ∧ δ ? (θc ∧ θd). (90)

26A detailed theory of derivatives of non homogeneous multiform functions of multiple non

homogeneous multiform variables may be found in [21].
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From Cartan’s second structure equation we can write

δRcd ∧ ?(θc ∧ θd)

= δdωcd ∧ ?(θc ∧ θd) + δωck ∧ ωk
d ∧ ?(θc ∧ θd) + ωck ∧ δωk

d ∧ ?(θc ∧ θd)

= δdωcd ∧ ?(θc ∧ θd) (91)

= d[δωcd ∧ ?(θc ∧ θd)]− δωcd ∧ d[?(θc ∧ θd)].

= d[δωcd ∧ ?(θc ∧ θd)]− δωcd ∧ [−ωc
k ∧ ?(θk ∧ θd)− ωd

k ∧ ?(θc ∧ θk)]

= d[δωcd ∧ ?(θc ∧ θd)].

Moreover, using the definition of algebraic derivative (Eq.(82)) we have

δ ? (θc ∧ θd) := δθm ∧ ∂[?(θc ∧ θd)
∂θm (92)

Now recalling Eq.(69) of Appendix A we can write

δ ? (θc ∧ θd) = δ(
1
2
ηckηdlεklmnθm ∧ θn)

= δθm ∧ (ηckηdlεklmnθn), (93)

from where we get

∂ ? (θc ∧ θd)
∂θm = ηckηdlεklmnθn. (94)

On the other hand we have recalling Eq.(60) of Appendix A

θmy ? (θc ∧ θd) = θmy(
1
2
ηckηdlεklrsθ

r ∧ θs)

= ηckηdlεklmnθn. (95)

Moreover, using the fourth formula in Eq.(72) of Appendix A, we can write

∂[?(θc ∧ θd)
∂θm = θmy ? (θc ∧ θd)

= ?[θm ∧ (θc ∧ θd)] = ?(θc ∧ θd ∧ θm). (96)

Finally,

δ ? (θc ∧ θd) = δθm ∧ ?(θc ∧ θd ∧ θm). (97)

Then using Eq.(91) and Eq.(97) in Eq.(90) we get

δLEH =
1
2
d[δωcd ∧ ?(θc ∧ θd)] + δθm ∧ [

1
2
Rab ∧ ?(θa ∧ θb ∧ θm)]. (98)
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Now,
1
2
Rab ∧ ?(θa ∧ θb ∧ θm) = −1

2
? [Raby(θa ∧ θb ∧ θm)]

= −1
4
Rabck ? [(θc ∧ θk)y(θa ∧ θb ∧ θm)]

= − ? (Rm − 1
2
Rθm) = − ? Gm, (99)

and so we can write∫
δ(LEH + Lm) =

∫
δθa ∧ (− ? Ga +

∂Lm

∂θa ) = 0. (100)

Appendix C. Calculation of the Components of Sλ

Here, using the powerful Clifford bundle formalism we present two calculations27 of
the components of Sλ given by Eq.(35) in a coordinate basis. We directly identify
Freud’s objects Uλσ

µ and Freud’s identity as given in [8]. We start from

?Sλ =
1
2
Γαβ ∧ ?(γα ∧ γβ ∧ γλ). (101)

Using the third formula in Eq.(72) of Appendix A we can write

?Sλ = Γαβ ∧ ?(γα ∧ γβ ∧ γλ) = ?

[
1
2
Γαβy(γα ∧ γβ ∧ γλ)

]
(102)

or
Sλ =

1
2
Γαβy(γα ∧ γβ ∧ γλ) (103)

Using now Eq.(60) of Appendix A we have

Sλ =
1
2

{
(Γαβyγα) ∧ γβ ∧ γλ − (Γαβyγβ) ∧ γα ∧ γλ + (Γαβyγλ) ∧ γα ∧ γβ

}
(104)

Now,

(Γαβyγα) ∧ γβ ∧ γλ = (γαyΓαβ) ∧ γβ ∧ γλ

Eq.(64)
= γαy(Γα

β ∧ γβ ∧ γλ) + Γα
β ∧ (γαy(γβ ∧ γλ))

Eq.(18)
= −γαy(dγα ∧ γλ) + Γα

β ∧ (δβ
αγµ − gαλγβ)

Eq.(64)
= −(γαydγα) ∧ γλ − dγα ∧ (γαyγλ)

+ Γα
α ∧ γµ − gαλΓα

β ∧ γβ

= −(γαydγα) ∧ γλ − gαλ(dγα + Γα
β ∧ γβ) + Γα

α ∧ γµ

Eq.(18)
= −(γαydγα) ∧ γλ + Γα

α ∧ γµ. (105)

27The second one is close to the one given in [35].
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Analogously we find

(Γαβyγβ) ∧ γα ∧ γλ = (γαydγα) ∧ γλ + Γα
α ∧ γλ,

(Γαβyγλ) ∧ γα ∧ γβ = (γλydγα) ∧ γα − dγλ, (106)

from where we can write

Sµ =
1
2

[
−(γαydγα) ∧ γµ − (γαydγα) ∧ γµ + (γµydγα) ∧ γα − dγµ

]
, (107)

which taking account that dγα = d2xα = 0, reduces to

Sµ = −1
2

[
(γαydγα) ∧ γµ + dγµ

]
. (108)

Now from Eq.(79) valid for a Levi-Civita connection for any A ∈ sec T ∗M ↪→
C`(M, g) it is dA = ∂ ∧A. So, we can write (recalling that Dκgλρ = 0):

dγµ = γκ ∧D∂κ
(gµργ

ρ)

= (∂κgµρ − gµβΓβ
κρ)γ

κ ∧ γρ

= gβρΓβ
µκγκ ∧ γρ

= δσ
βΓβ

µρg
κλγλ ∧ γσ

=
1
2

(
δσ
βΓβ

µρg
κλ − δλ

βΓβ
µρg

κσ
)
γλ ∧ γσ. (109)

Also,

γαydγα = γαy(gβρΓβ
ακγκ ∧ γρ)

= gακgβρΓβ
ακγρ − gαρgβρΓβ

ακγκ

= (gακgβρΓβ
ακ − Γα

ακ)γρ, (110)

and then

(γαydγα) ∧ γµ

= (δσ
µgακΓλ

ακ − δσ
µgρλΓα

αρ)γλ ∧ γσ. (111)

So, we get

Sµ = −1
2

(
δσ
βΓβ

µρg
κλ + δσ

µgακΓλ
ακ − δσ

µgρλΓα
αρ

)
γλ ∧ γσ

=
1
2

1
2

det

 δλ
µ δσ

µ δι
µ

gλκ gσκ gικ

Γλ
κι Γσ

κι Γι
ικ

 γλ ∧ γσ

=
1
2
Sλσ

µ γλ ∧ γσ, (112)

and then

Sλσ
µ =

1
2

det

 δλ
µ δσ

µ δι
µ

gλκ gσκ gικ

Γλ
κι Γσ

κι Γι
ικ

 . (113)
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C.1. Freud’s Uλσ
µ

Now putting

gσν =
√
−ggσν , gλσ =

1√
−g

gλσ (114)

we recognize looking at the last formula in Freud’s paper [8] that his Uλσ
µ is given

by
Uλσ

µ =
√
−gSλσ

µ . (115)

C.2. An Equivalent Formula for Freud’s Uλσ
µ

We start again our computation of Uλσ
µ , recalling that from (Eq.(79)) we have for

the Hodge coderivative

δγα = −∂yγα = −γκy(D∂κγα)

= γκy(Γα
κργ

ρ) = gκρΓα
κρ, (116)

and then

γαydγα = −2Γα
α + (γαyΓβα)γβ + γαyΓαβ)γβ

= −2Γα
α + Γα

α + γαδγα

= −Γα
α + γαδγα. (117)

Using this result in Eq.(108) we get

Sλ = −1
2

(−Γα
α ∧ γλ + (γα ∧ γλ)δγα + dγλ) . (118)

Recalling that g = det[gαβ ] we have the well known result [11]

dg = (∂αg)γα = 2gΓκ
ακγα = 2gΓκ

κ, (119)

and we can write

Sλ = −1
2

(
−dg

g
∧ γλ + (γα ∧ γλ)δγα + dγλ +

1
2

dg
g
∧ γλ

)
= −1

2

[
1
g

(
−dg ∧ γλ + gdγλ + g(γα ∧ γλ)δγα +

1
2
dg ∧ γλ

)]
. (120)

Now, recalling again that the metric compatibility condition Dκgλρ = 0, we have
1
2g

[dg ∧ γλ + 2gδγα(γα ∧ γλ]

= Γκ
κ ∧ γλ + δγα(γα ∧ γλ)

= (Γβακ + Γαβκ)gκαγα ∧ γλ

= (∂κgαβ)gκαγα ∧ γλ

= (dgαβyγβ)γα ∧ γλ, (121)

and Eq.(120) becomes

Sλ = −1
2

[
1
g

(−dg ∧ γλ + gdγλ) + (dgαβyγβ)γα ∧ γλ

]
. (122)
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However, we also have

−dg ∧ γλ + gdγλ = gλσg
[
−∂β(lng)gνβgσρ + gβρ∂βgσν

]
γν ∧ γρ

=
1
2
gλσ∂β

[
g

(
gσνgρβ − gρσgνβ

)]
γν ∧ γρ

− g(dgαβyγβ)γα ∧ γλ, (123)

and finally we get

Sλ =
1
2

1
2(−g)

gλσ∂β

[
g

(
gσνgρβ − gρσgνβ

)]
γν ∧ γρ, (124)

which gives an equivalent expression for the Sνρ
λ , which is very useful in calculations

in GR, e.g., in the calculation of what is there defined as the “inertia” mass of a
body creating a gravitational field. (see Eq.(54) and below)

Sνρ
λ =

1
2(−g)

gλσ∂β

[
g

(
gσνgρβ − gρσgνβ

)]
. (125)

From Eq.(115) above we can then write an equivalent formula for Freud’s
Uλσ

µ , namely:

Uνρ
λ =

√
−gSνρ

λ =
1

2
√
−g

gλσ∂β

[
g

(
gσνgρβ − gρσgνβ

)]
= −1

2
gλσ∂β

[(
gρσgνβ − gσνgρβ

)]
. (126)

C.3. The Freud Superpotentials Uλ

We also introduce the Freud’s superpotentials, i.e., the pseudo 2-forms Uλ ∈
sec

∧2
T ∗M , by:

Uλ =
1
2
Uνρ

λ ∈ γν ∧ γρ. (127)

Now, Freud [8] defined in his Eq.(1)

Uν
λ = ∂ρU

νρ
λ = −

√
−gΓκ

ρκS
νρ
λ +

√
−g∂ρSνρ

λ . (128)

On the other hand from Eq.(32) we have

?−1d ? Sλ = δSλ = −∂ySλ = (−∂νSνρ
λ )γρ = −Gλ − tλ (129)

or
−2∂κSκρ

ν = −2Rρ
ν + Rδρ

ν − 2tρν . (130)

Writing
Rρ

ν =
√
−gRρ

ν , R =
√
−gR, tρν =

√
−gtρν (131)

and using Eq.(128) we have

−2
√
−g∂κSρκ

ν + 2
√
−gΓκ

ακSρα
ν = 2Rρ

ν −Rδρ
ν + 2

√
−gΓκ

ακSρα
ν + 2tρν
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or

2Uρ
ν = −2Rρ

ν + Rδρ
ν −

1
2
Γκ

κρgλσ

[(
gσνgρβ − gρσgνβ

)]
,β −2tρν

= δρ
ν(R + L)− 2Rρ

ν −
1
2
Γκ

κρgλσ

[(
gσνgρβ − gρσgνβ

)]
,β −2tρν − Lδρ

ν , (132)

which can be written as [8]

2Uν
λ = δρ

ν(R + L)− 2Rρ
ν +

(
Γν

µρ∂λgµρ − Γκ
κµ∂λgµν

)
(133)

with
L = gµν

[
Γσ

µρΓ
ρ
σν − Γσ

µνΓρ
σρ

]
. (134)

Appendix D. The Einstein Energy-Momentum Pseudo 3-Forms ?eλ

We have from Eq.(127)

∂yUλ = ∂y(
√
−gSλ) = γκyD∂κ

(
√
−gSλ)

= −
√
−gΓα

αySλ +
√
−g∂ySλ

= −
√
−gΓα

αySλ +
√
−g(Tλ + tλ), (135)

Defining Tλ and tλ ∈ sec
∧1

T ∗M by

Tλ =
√
−gTλ, (136)

tλ =
√
−g(tλ − Γα

αySλ) (137)
or

?tλ =
√
−g(?tλ + Γκ

κ ∧ ?Sλ) (138)
we get

∂yUλ = Tλ + tλ. (139)

In components
∂κUκρ

λ = Tρ
λ + tρλ (140)

Comparing28 Eq.(140) with Eq.(5-5.5) of [36] we see that

tρλ =
√
−g(tρλ − Γκ

ακS
αρ
λ ) (141)

is what is there called the components of the Einstein pseudo-tensor.
Comparing29 Eq.(140) with Eq.(2.14) of [13] we see that what is there called

the components of the Einstein pseudo-tensor are the eρ
λ given by

eρ
λ = (tρλ − Γκ

ακS
αρ
λ ). (142)

28Take into account that our definition of the Ricci-tensor differs by a signal from the one of the

quoted author.
29See previous footnote.
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Also taking into account Eq.(30) we have for the Einstein 3-forms:

?eλ =
1
2
Γαβ ∧ [ωλ

κ ∧ ?(θα ∧ θβ ∧ θκ) + Γβ
κ ∧ ?(θα ∧ θκ ∧ θλ) + 2Γκ

κySλ]. (143)

From this we see that Einstein superpotentials are nothing more than the
Freud’s superpotentials Uλ.
Remark 9. The coordinate expression for eρ

λ if you need it can be found in sev-
eral books, e.g., [4, 13]. However, important from a historical point of view is to
mention that already in 1917 the famous italian mathematician T. Levi-Civita30

already pointed out [12] that Einstein solution for the energy-momentum descrip-
tion of the gravitational field (the pseudo tensor) was a nonsequitur.

D.1. Einstein “Inertial” Mass mE

In Section 4 the “inertial” mass of a body generating a gravitational field repre-
sented by a Lorentzian spacetime with metric g has been defined by mI =

∫
?Sµ,

which we comment to be gauge dependent quantity. Using Eq.(139) we may define
the Einstein “inertial mass” by

mE =
∫

S2
? U0. (144)

where S2 is a surface of radius r →∞. Let us calculate ?Uλ in a coordinate basis.
Recalling Eq.(126) and Eq.(69) we have

?Uλ = −1
2

1
2
√
−g

gλσ∂β

[
g

(
gρσgνβ − gσνgρβ

)]
? (γν ∧ γρ)

= −1
2

1
2
√
−g

gλσgνµgρκ∂β

[
g

(
gρσgνβ − gσνgρβ

)]
? (γµ ∧ γκ)

= −1
2

1
2

√
−g

2
√
−g

gλσgνµgρκ∂β

[
g

(
gρσgνβ − gσνgρβ

)]
gµεgκτ εεταωγα ∧ γω

= −1
8
gλσ∂β

[
g

(
gρσgνβ − gσνgρβ

)]
ενραωγα ∧ γω. (145)

Now, for a diagonal metric tensor we have (with k,m, n = 1, 2, 3)

?U0 =
1
4
g00∂β

[
g

(
g00gρβ

)]
ερ0αωγα ∧ γω (146)

= −1
4
g00∂l(−gg00gkl)ε0kmnγm ∧ γn.

?U0 = g00 ? U0 = −1
4
∂l(−g11g22g33g

kl)ε0kmnγm ∧ γn. (147)

Taking into account that if we use “Cartesian like coordinates” {xµ} (as,
e.g., in the isotropic form31 of the Schwarzschild solution [38]) we must define the
radial variable of the standard spherical coordinates ( r, θ, ϕ) by. r2 = −gijx

ixj .

30Yes, the one that gives name to the connection used in GR.
31In isotropic Cartesian coordinates the Schwarzschild solution of the Einstein-Hilbert equation

reads (with rg = 2mG/c2 in MKS units): g =
(

1−rg/4r

1+rg/4r

)2
dt⊗dt− (1+ rg/4r)2

∑3

i=1
dxi⊗dxi.
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We parametrize (as it is standard) the surface S2 which has equation f =
xixi + r2 = 0 with the coordinates (θ, ϕ). The “Euclidean” unitary vector normal
to this surface has thus the components (n1, n2, n3) with nk = −xk

r . Now, we have

?U0 = −1
4
∂l(−g11g22g33g

kl)ε0kmndxm ∧ dxn

= −1
2
(U1dx2 ∧ dx3 + U2dx3 ∧ dx1 + U3dx1 ∧ dx2), (148)

with
Uk = ∂l(−g11g22g33g

kl). (149)

Since

dxi =
∂xi

∂θ
dθ +

∂xi

∂ϕ
dϕ (150)

we can write Eq.(148) as

?U0 = −1
2

det

 U1 U2 U3

∂x1

∂θ
∂x2

∂θ
∂x3

∂θ
∂x1

∂ϕ
∂x2

∂ϕ
∂x3

∂ϕ

 dθ ∧ dϕ

= −1
2
r2 sin2 θ det

 U1 U2 U3

∂x1

r∂θ
∂x2

r∂θ
∂x3

r∂θ
∂x1

r sin2 θ∂ϕ
∂x2

r sin2 θ∂ϕ
∂x3

r sin2 θ∂ϕ

 dθ ∧ dϕ (151)

Then putting ~U = (U1, U2, U3) and defining moreover the euclidean orthonormal
vectors

~er = (n1, n2, n3)

~eθ = (
1
r

∂x1

∂θ
,
1
r

∂x2

∂θ
,
1
r

∂x3

∂θ
), (152)

~eϕ = (
1

r sin2 θ

∂x1

∂ϕ
,

1
r sin2 θ

∂x2

∂ϕ
,

1
r sin2 θ

∂x3

∂ϕ
),

we can rewrite Eq.(151) using the standard notation of vector calculus32 as:

?U0 = −1
2
r2 sin2 θ ~U • (~eθ × ~eϕ)dθ ∧ dϕ

= −1
2
r2 sin2 θ (~U • ~er)dθ ∧ dϕ

= −1
2
r2 sin2 θU inidθ ∧ dϕ

= −1
2
∂l(−g11g22g33g

li)nir
2 sin2 θdθ ∧ dϕ. (153)

32With • denoting the euclidean scalar product and × the vector product.
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Finally, making the radius r →∞ we get

mE =
∫

S2
? U0 = − lim

r→∞

1
2

∫
S2

∂l(−g11g22g33g
lk)nkr2 sin2 θdθ ∧ dϕ

= −1
2

lim
r→∞

∫
S2

∂

∂xl
(−g11g22g33g

kl)nkr2 sin2 θdθdϕ

=
1
2

lim
r→∞

∫
S2

xk

r

∂

∂xl
(−g11g22g33g

kl)r2 sin2 θdθdϕ, (154)

a well known result.
For the isotropic form of the Schwarzschild metric a simple calculation shows

that mE = m, the parameter identified as “gravitational” mass in the solution of
Einstein’s equations.

Appendix E. Landau-Lifshitz Energy-Momentum Pseudo
3-Forms ?lλ

Given a coordinate basis associated with a chart with coordinates {xα} covering
U ⊂ M and writing tµ = tµνγν given by Eq.(35), we immediately discover that
the tµν are not symmetric. So, this object, cannot be used to formulate a chart
dependent33 angular momentum “conservation law” for system consisted of matter

plus the gravitational field, i.e., the objects Mµν ∈ sec
∧3

T ∗M given by

Mµν = xµ(?Tµ + ?tµ)− xν(?Tν + ?tν). (155)

In view of this fact let us find an energy-momentum “conservation law” in-
volving a symmetric energy-momentum pseudo tensor.

Define the superpotentials

Hµ = gSµ = −
√
−gUµ. (156)

Then we have

∂y(Hµ) = g∂ySµ + 2gΓκ
κySµ

= (−g)(Tµ − tµ − 2Γκ
κySµ) (157)

= (−g)(Tµ − lµ), (158)

where

?lµ = (?tµ + 2Γκ
κySµ)

= (?tµ − 2Γκ
κ ∧ ?Sµ), (159)

are the Landau-Lifshitz energy-momentum 3-forms as it is obvious comparing
Eq.(73) with Eq.(96.15) of [11]. Also, taking into account Eq.(35) we have

?lµ =
1
2
Γαβ ∧ [ωµ

κ ∧ ?(θα ∧ θβ ∧ θκ) + Γβ
κ ∧ ?(θα ∧ θκ ∧ θµ) + Γκ

κySµ]. (160)

33It is possible to define global angular momentum 3-forms only for particular Lorentzian
spacetimes.
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However, the components lµν are symmetric [11], as may be verified by a long
calculation.

E.1. Landau-Lifshitz “Inertial” Mass mLL

As a last observation, taking into account Eq.(154) if we compute

mLL =
∫

S2
? Hµ

on the surface of a sphere of radius r and making the radius r → ∞ we get for
the Schwarzschild solution (in Cartesian isotropic coordinates) and taking into
account that limr→∞

√
−g = 1,

mLL =
1
2

lim
r→∞

∫
S2

xk

r

∂

∂xl
(−g11g22g33g

kl)r2 sin2 θdθdϕ = mE = m (161)

At this point we end this long Appendix with a comment by Logunov [13]:
“it was the fact that “inertial” mass coincides with gravitational mass that gave

grounds for asserting that they are equal in GR, to”.

Indeed, in their celebrated textbook, Landau and Lifshitz [11] wrote at page
334:

“. . .P 0 = m, a result34 which was naturally to be expected. It is an expression of

the equality of “gravitational” and “inertial”mass ( “gravitational” mass is the mass that

determine the gravitational field produced by the body, the same mass that appears in the

metric tensor of the gravitational field, or in particular, in Newton’s law; “inertial” mass

is the mass that determines the ratio of energy momentum of the body; in particular,

the rest energy of the body is equal to the mass multiplied by c2.”

However, as discussed in [2, 13] the
∫

S2
? H0 (or

∫
S2

? U0) being the inte-

gral of a gauge dependent quantity depends on the coordinate chart chosen for its
computation, and we can easily build examples in which the “inertial” mass is dif-
ferent from the “gravitational” mass, violating the main Einstein’s heuristic guide
to GR, namely the equality of both masses. This results makes one to understand
the reason of Sachs & Wu statement quoted above.
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