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Abstract

In this short pedagogical note we clarify some subtleties concerning
the symmetries of the coeffi cients of a Riemann-Cartan connection and
the symmetries of the coeffi cients of the contorsion tensor that has been a
source of some confusion in the literature, in particular in a so called ‘ECE
theory’. We show in details that the coeffi cients of the contorsion tensor of
a Riemann-Cartan connection has a symmetric part and an antisymmetric
part, the symmetric part defining the strain tensor of the connection.
Moreover, the contorsion tensor has also a bastard anti-symmetry when
written with all its indices in the ‘covariant’positions.

1 Some Preliminaries

LetM be a 4-dimensional Hausdorff, paracompact and locally compact manifold
admitting a Lorentzian metric tensor g ∈ secT 20M . Let us suppose that M is
also spacetime orientable by a global 4-form field τg ∈ sec

∧4
T ∗M and also

time orientable1 by the relation ↑ and let be D̊ the Levi-Civita connection of
g. Under these conditions we call the pentuple 〈M, g, D̊, τg, ↑〉 a Lorentzian
spacetime. The curvature tensor of D̊ will be denoted in what follows by R̊.

Let D be a general Riemann-Cartan connection on M , i.e., Dg = 0. In
general the Riemann (curvature) tensorR and the torsion tensorΘ ofD are non

1See, e.g., [12] for details.
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null. Under the conditions of orientability and time orientability the pentuple
〈M, g, D, τg, ↑〉is said to be a Riemann-Cartan spacetime.

By definition a manifold equipped with a given connection is said to be flat
if the Riemann (curvature) tensor of that connection is null.

Let 〈xµ〉 and 〈x′µ〉 be respectively coordinate functions for U ⊂ M and
U ′ ⊂M such that U ∩ U ′ 6= ∅.

Moreover, let 〈eµ = ∂/∂xµ〉 and 〈e′µ = ∂/∂x′µ〉 be respectively basis of TU
and TU ′ (µ = 0, 1, 2, 3) and 〈ϑµ = dxµ〉 and 〈ϑ′µ = dx′µ〉 the corresponding
dual basis i.e., basis for T ∗U and T ∗U ′. We also introduce the reciprocal basis
〈eµ〉 of 〈eµ〉 and 〈e′µ〉 of 〈e′µ〉 for TU and TU ′ and the reciprocal basis 〈ϑµ〉 of
〈ϑµ〉 and 〈ϑ′µ〉 of 〈ϑ′µ〉 for T ∗U and T ∗U ′, such that

g = gµνϑ
µ ⊗ ϑν = gµνϑµ ⊗ ϑν , gµαgαν = δµν ,

eµ = gµνeν , ϑµ = gµνϑ
ν , etc. (1)

Moreover we introduce as metric for the cotangent bundle the object g ∈
secT 02M,

g = gµνeµ ⊗ eν = gµνe
µ ⊗ eν

and define the scalar product of arbitrary of arbitrary vector vector fieldsV,W ∈
secTM and arbitrary 1-form fields X ,Y ∈ sec

∧1
T ∗M by

V ·W = g(V,W), X · Y = g(X,Y ). (2)

We write

Deµϑ
ν := −Γ··νµα·ϑ

α, De′µϑ
′ν := −Γ′··νµα·ϑ

′α,

D̊eµϑ
ν := −Γ̊··νµα·ϑ

α, D̊e′µϑ
′ν := −Γ̊′··νµα·ϑ

′α. (3)

2 Γ··µρσ· is not in General Antisymmetric in the
Lower Indices

As it is well known, given an arbitrary connection D, the relation between Γ′··λικ·
and Γ··µρσ· (dubbed transformation law for the connection coeffi cients) is

Γ′··λικ· =
∂x′λ

∂xµ
∂xρ

∂x′ι
∂xσ

∂x′κ
Γ··µρσ· +

∂x′λ

∂xµ
∂2xµ

∂x′ι∂x′κ
(4)

From Eq.(4) we see that even if happens that Γ··µρσ· is antisymmetric in a given
coordinate basis, i.e., Γ··µρσ· = − Γ··µσρ·, in general it will be not antisymmetric in
another coordinate chart since the term ∂x′λ

∂xµ
∂2xµ

∂x′ι∂x′κ is symmetric in the lower
indices. This immediately contradicts the main claim of the so called “ECE
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unified field theory” 2 , where it is stated that the connections coeffi cients of a
Riemann-Cartan connection are always antisymmetric.

3 Relation between Γ··λµν· and Γ̊··λµν·

We shall prove that :

Γ··λµν· = Γ̊··λµν· +K ··λµν· (5)

where3

K ··βµν· :=
1

2
(T ··βµν· + S··βµν·)

=
1

2
gλβgλαT

··α
µν· −

1

2
gβλgνρT

··ρ
µσ· −

1

2
gβλgµαT

··α
νλ· (6)

=
1

2
(T ··βµν· − T ·β·ν·µ + T β···µν).

and

T ··λµν· = Γ··λµν· − Γ··λνµ· = −T ··λνµ·, (7)

S··λµν· = −gλσ(gναT
α
µσ + gµαT

α
νσ) = S··λνµ· . (8)

Before presenting the proof (see also [14, 10]) of the above equations we
recall that the T ··λµν· are the components of the so called torsion tensor

Θ =
1

2
T ··λµν·ϑ

µ ∧ ϑν ⊗ eλ ∈ sec
∧2
T ∗M ⊗ TM, (9)

Also, the K ··λµν· are the components of an object that (since Schouten [13]) is
called the contorsion tensor

K = K ··λµν·ϑ
µ ⊗ ϑν ⊗ eλ = K ···µνλϑ

µ ⊗ ϑν ⊗ eλ ∈ secT ∗M ⊗ T ∗M ⊗ TM. (10)

As can be easily verified from Eq.(6) it is the case that

K ···µνλ = gλαK
··α
µν· = −K ···µλν (11)

The validity of Eq.(11) lead many authors to say the contortion tensor is
antisymmetric in the two last indices. However, it is necessary to observe here
that (parodying Göckeler and Schücker [5]) the anti-symmetry is a bastard one,

2See the criticisms to ECE theory in the list of references. Particularly, see [1] where Bruhn,
pedagogicaly identifies that the mistake of the author of ECE papers regarding his statement
that for any general connection its coeffi cients in any coordinate basis must be anti-symmetric
is simply due to the fact that he did not know (until today) that a general real n× n matrix
can be decomposed in a symmetric matrix plus an anti-symmetric one.

3Note that this formula differs by a factor of 1/2 and signal from the one in [6].
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since we are comparing the components of K that live on different spaces,
namely T ∗M and TM .
Moreover, writing

K = K ·β·µ·νϑ
µ ⊗ ϑβ ⊗ eν ∈ secT ∗M ⊗ TM ⊗ T ∗M. (12)

where like in [6]

K ·β·µ·ν := gνλg
βκK ··λµκ·,

we have again a bastard anti-symmetry since

K ·β·µ·ν = −K ··βµν·. (13)

Finally we remark that (since Schouten [9]) the S··λµν· = S··λνµ· are said to be
the components of the strain tensor (of the connection D)

S = S··λµν·ϑ
µ ⊗ ϑν ⊗ eλ = S···µνλϑ

µ ⊗ ϑν ⊗ eλ ∈ secT ∗M ⊗ T ∗M ⊗ TM. (14)

Remark It is obvious from the above formulas that the contorsion tensor is not
antisymmetric in the lower indices µν due to the presence of the strain tensor
that is symmetric contrary to what is stated, e.g., in [1].

4 Proof of Eq.(5)

We start remembering that since D̊g = 0 and Dg = 0 we can write in an
arbitrary coordinate basis that:

D̊µgνλ = ∂µgνλ − Γ̊··ρµν·gρλ − Γ̊··ρµλ·gνρ = 0, (15)

Dµgνλ = ∂µgνλ − Γ··ρµν·gρλ − Γ··ρµλ·gνρ = 0. (16)

From Eq.(15) and some trivial algebra we get, as well known

Γ̊··ρµν· =
1

2
gλρ (∂µgνλ + ∂νgµλ − ∂λgµν) . (17)

From Eq.(16) we can write:

∂µgνλ = Γ··ρµν·gρλ + Γ··ρµλ·gνρ, (18)

∂νgµλ = Γ··ρνµ·gρλ + Γ··ρνλ·gµρ,, (19)

∂λgµν = Γ··ρλµ·gρν + Γ··ρλν·gµρ. (20)

Then,

∂µgνλ + ∂νgµλ − ∂λgµν
= gρλ(Γ··ρµν· + Γ··ρνµ·) + gνρ(Γ

··ρ
µλ· − Γ··ρλµ·) + gµρ(Γ

··ρ
νλ· − Γ··ρλν·). (21)
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Observe that Γ··ρ(µν)· : + 1
2 (Γ··ρµν·+ Γ··ρνµ·) is the symmetric part of Γ··ρµν· whereas

1
2 (Γ··ρµλ·−Γ··ρλµ·) = 1

2T
··ρ
µλ· is the antisymmetric part of Γ··ρµρ·. We can rearrange the

terms in Eq.(21) taking into account the definition of the connections coeffi cients
of the Levi-Civita connection D̊ as:

gρλΓ··ρ(µν) =
1

2
gρλ(Γ··ρµν· + Γ··ρνµ·)

=
1

2
(∂µgνλ + ∂νgµλ − ∂λgµν)− 1

2
gνρ(Γ

··ρ
µλ· − Γ··ρλµ·)− gρλ

1

2
(Γ··ρνλ· − Γ··ρλν·).

(22)

Then,

Γ··β(µν) =
1

2
gβλ(∂µgνλ + ∂νgµλ − ∂λgµν)

− gβλ 1

2
gνρ(Γ

··ρ
µλ· − Γ··ρλµ·)− g

βλgρλ
1

2
(Γ··ρνλ· − Γ··ρλν·)

= Γ̊··βµν· −
1

2
gβλ(gνρT

··ρ
µλ· + gβλgρµT

··ρ
νλ·)

= Γ̊··βµν· +
1

2
S··βµλ· (23)

Finally, taking into account that Γ··ρµν· = Γ··ρ(µν)·+ Γ··ρ[µν]· = Γ··ρ(µν)·+
1
2T
··ρ
µν· we have

using Eq.(23)

Γ··ρµν· = Γ̊··ρµν· +
1

2
S··ρµλ· +

1

2
T ··ρµν· = Γ̊··ρµν· +K ··ρµν·, (24)

and Eq.(5) is proved�

5 Relation Between the Curvature Tensors R
and R̊

Let u, v, w ∈ secTU and α ∈ sec
∧1
T ∗U . The curvature operators of D̊ and

D are defined by

ρ̊, ρ : secTM ⊗ TM ⊗ TM −→ secTM, (25)

ρ̊(u,v,w) = D̊uD̊vw − D̊vD̊uw − D̊[u,v]w, (26)

ρ(u,v,w) = DuDvw −DvDuw −D[u,v]w. (27)

It is usual to write [3] ρ̊(u,v,w) = ρ̊(u, v)w, ρ(u,v,w) = ρ(u, v)w and even
to call curvature operators the objects

ρ̊(u, v) = D̊uD̊v − D̊vD̊u − D̊[u,v],

ρ(u,v) = DuDv −DvDu −D[u,v]. (28)
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Also, the Riemann curvature tensors of those connections are respectively the
objects:

R̊(w,u,v,α) := α(ρ̊(u, v)w),

R(w,u,v,α) := α(ρ(u, v)w). (29)

Moreover, the components of the curvature tensors relative in the appropri-
ated coordinate basis associated to the coordinates 〈xµ〉 covering U are:

R̊(eµ, eα, eβ ,ϑ
λ) := R̊· · · λµαβ·

R(eµ, eα, eβ ,ϑ
λ) := R· · · λµαβ· . (30)

We get after some trivial (but tedious algebra as in the last section) [10] that

R· · · λµαβ· = R̊· · · λµαβ· + J · · · λµ[αβ]· (31)

where

J ···λµαβ· = DαK
··λ
βµ· −K ··λβσ·K ··σαµ·

J · · · λµ[αβ] · = J · · · λµαβ · − J · · · λµβα · . (32)

6 Geometry of a Manifold where Γ··ρµλ· = −Γ··ρλµ· in
some Coordinates 〈xµ〉 Covering U ⊂M

Does the condition Γ··ρµλ· = −Γ··ρλµ· implies that Γ̊··ρµλ· = 0? Of course, not in
general. Let us see the reason for that. From Eq.(5) we see that all that is
necessary for the validity of Γ··ρµλ· = −Γ··ρλµ· is that in the coordinate system
where Γ··ρµλ· = −Γ··ρλµ· we have

Γ̊··ρµλ· = −1

2
S··ρµλ· (33)

Observe moreover that when Γ··ρµλ· = −Γ··ρλµ· and besides that we have also
S··ρµλ· = 0, then it follows from Eqs.(8) that ∂µgνλ = 0, i.e., the gνλ are constant
functions of the coordinates. Then, taking into account the Lorentz signature of
the metric we can introduce coordinates in some open set intersecting U such
that the matrix with entries g′νλ is the diagonal matrix diag(1,−1,−1,−1).
Thus we see that taking into account Eq.(23) when Γ··ρµλ· = −Γ··ρλµ· we have

that Γ̊··ρµλ· = 0 only if S··ρµλ· = 0.
However, it is a good idea to keep in mind that even in that case the Riemann

curvature tensor of the connection Riemann-Cartan connection D is not null in
general. Indeed, from Eqs.(31) and (32) it follows that

R· · · λµαβ· = J · · · λµ[αβ] ·

= DαK
··λ
βµ· −K ··λβσ·K ··σαµ· −DβK

··λ
αµ· +K ··λασ·K

··σ
βµ· (34)
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Finally, we ask: what is a suffi cient condition for R· · · λµαβ· = 0?
The condition is the existence of four parallel vector fields defined on all M

such that they are basis for each TxM (the tangent space at x ∈ M). A set of
parallel vector fields {Xa}, a = 0, 1, 2, 3 is by definition one such thatDXa

Xb =
0 for all a, b = 0, 1, 2, 3. A space with this property is called parallelizable and
in the case where it has Lorentzian metric is known as Weintzbock spacetime.

7 Final Remarks

In his note 122 [4] MWE states as ‘theorem’ that any connection must be
anti-symmetric. From Eq.(6) above it is obvious that this statement is simply
wrong. That error simply invalidates almost all of his statements presented in
his series of papers on ‘ECE theory’. And indeed, it is well known that some (if
not all) of those papers are full of very serious errors, including one that MWE
calls the ‘dual Bianchi identity’, a non sequitur that leads him to claim that
Einstein’s equations are mathematically wrong! Of course they are not. For
more details on this particular issue see [11]. For a discussion of some another
MWE serious flaws see also [9, 7, 8, 2].
Those sad facts are being presented here because despite the criticisms

quoted above that simply show that ECE theory is a nonsequitur, MWE re-
cently found support from a british publisher4 to launch a journal: Journal of
Foundations of Physics and Chemistry which will publish all the papers he and
others authored on ECE. Before you order such a journal, please give a read
with attention on this pedagogical and free note and also the free references
quoted below.
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