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The following summarizes some of the major contributions that have emerged from
the publications and studies of Professor Horwitz:

1. Hypercomplex agebras in quantum theory

It was known to von Neumann that the formulation of the quantum theory does not
require the restriction to a complex number field, but that the use of the non-commutative
(skew) field of quaternions also works. It was suggested by von Neumann to his colleague
Herman Goldstine that an even greater generalization is possible, to the non-associative
number system of Cayley numbers, or octonions, which is the last division algebra over the
reals. Hamilton had investigated both of these number systems. Goldstine and Horwitz
found that it is possible to build a Hilbert space over the octonions [H.H. Goldstine and
L.P. Horwitz, Proc. Nat. Aca. 48, 1134 (1962)]. Some consequences of this work were
explored in [L.P. Horwitz and L.C. Biedenharn, Jour. Math. Phys. 20, 269 (1979)].
Horwitz then then returned to develop a full theory of quaternionic quantum mechanics,
later discussed in a book of Stephen L. Adler (Institute for Advanced Study in Princeton)
called ”Quaternionic Quantum Mechanics and Quantum Fields”, Oxford University Press
(1995), which was very much a joint effort over a period of years during visits to IAS,
largely motivated by Horwitz’s work, but with significantly more content consisting of
general results as well as examples of possible physical applications.

In this context, Adler found a way to extract variations of Hamilton functions and
Lagrangians that could be used to define a (non-relativistic) quantum field theory, and
then discovered, with a result shown by his student, A.C. Millard at Princeton, a form
of statistical mechanics in which, in the ensemble average, ordinary quantum mechanics
could emerge. This resulted in a second book by Adler, ”Quantum Theory as an Emergent
Phenomenon”, Cambridge University Press (2004), which also involved some significant
collaboration with Horwitz.

The underlying physics of the relatively new methods of stochastic analysis introduced
by L. Diosi and N. Gisin, and eventually L.P. Hughston, G.C. Ghirardi, P. Pearle, A.
Rimini, Horwitz and Adler, and others, for the collapse of quantum wave functions, can
be modelled in this framework. Horwitz has been involved in considerable efforts in this
direction, both in applications, and also searching for the rather deep goal of making a
connection with the theory of semigroups discussed below.

2. Algebraic approach to the quark model

In 1964, there were many expositions on the “quark model” of hadronic physics at
CERN, and Horwitz (then resident at Universityof Geneva) brought the question to Yuval
Ne’eman whether these results could be explained in term of group theory rather than
the very questionable dynamics (at that time) of such strongly interacting systems. They
succeeded (with N. Cabibbo) in developing a group theoretical model which was very
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successful, and later justified its structure in terms of the asymptotic forms proposed by
Gell-Mann and his student Melosh. This work attracted much attention by phenomenolo-
gists, but eventually gave way to studies in non-Abelian quantum field theory, particularly
after the seminal work of ’t Hooft and Veltman on renormalization of gauge fields and
Gross and Politzer on asymptotic freedom.

3. Unstable Systems

In the years 1964-1971 on visits to CERN and the University of Geneva, Horwitz’s
interest turned to the description of unstable systems, and with J.-P. Marchand, he set the
mathematical foundations of what may be called the ”decay-scattering” system, within
the general framework of the ideas of Wigner and Weisskopf. A resolvent formalism was
developed for treating this theory, but it became clear as a result of experiments performed
at Fermilab that this model was inadequate for the description of more than one channel
decay, such as the neutral K meson system. Horwitz and collaborators showed that on
the soluble Lee-Friedrichs model, the errors implicit in the Wigner-Weisskopf model were
beyond the experimental uncertainties. It became clear that there was a need for the
realization of an exact semigroup (not realized in the Wigner-Wweisskopf model)for the
evolution of an unstable system (as in the phenomenological model of Yang, Oehme and
Wu), which resulted in his effort to bring the theory of Lax and Phillips [P.D. Lax and
R.S. Phillips, “Scattering Theory,” Academic Press. N.Y. (1967)], developed for classical
acoustic or electromagnetic waves into the framework of the quantum theory.

4. The quantum Lax-Phillips theory

Horwitz’s former doctoral student, Yossi Strauss, at Tel Aviv University, found a way
to apply the Lax-Phillips theory to the quantum mechanical case, resulting in a long effort
to develop the theory of semigroups for its application to unstable systems. New results
have been continuously found along the way. A considerable number of workers in the
field have appreciated these developments, and there is a growing literature including the
important recent discovery (by Strauss) of a self-adjoint operator (to be published) for
which the expectation value, in the framework of standard nonrelativistic quantum theory,
decreases monotonically. This operator, which provides an important link to irreversible
processes, is being studied for its consequences by Horwitz, Strauss and a group of doctoral
students at Tel Aviv.

5. Relativistic quantum theory

A relativistic formulation of the description of unstable particle decay is necessary
for a quantum mechanical description (which is not quantum field theoretical, in order to
obtain local information and interference effects in a simple way) since the particles in decay
products undergo changes in mass. Horwitz therefore became interested in developing a
relativistic classical and quantum dynamics in 1971, with his colleague C. Piron, who
also realized that no such consistent theory existed (even though there had been much
literature by Bergmann, Picasso, Synge, and others), and they developed a good theory
which coincided with the original work of Stueckelberg in 1941, but was more general in an
essential way. Stueckelberg, and later Feynman and Schwinger had considered one-particle
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theories, but the Horwitz-Piron theory [L.P. Horwitz and C. Piron, Helv. Phys. Acta 46,
316 (1973)], with an invariant universal time parameter (which can be identified with
the Newtonian time) allowed the construction of many-body theories. They, with some
colleagues, worked out the manifestly covariant Gibbs ensembles and Boltzmann theories.

In this theory, the time t of Einstein, which varies covariantly with the space coordi-
nates x under Lorentz transformation due to a change in frame of the observer’s apparatus,
is considered a dynamical variable. This interpretation is consistent with Einstein’s thought
experiment in which there are two frames, say, F and F’ moving at constant velocity rela-
tive to one another. Signals emitted in F are then detected in F’ with a different interval
between them, consistent with the Lorentz transformation, and thus the time of arrival of
a signal in F’ is affected by the motion of the frame. In order to observe that the time of
arrival of a signal is different than the time of emission in F, it is necessary that there be a
common basis for detecting such times, as for a standard ruler for measuring the difference
in apparent lengths induced by the Lorentz contraction. One comes to the conclusion that
there must be a universal time (sometimes referred to in the texts, e.g., Taylor’s book, as
clocks made “in the same factory”). The Stueckelberg-Horwitz-Piron universal time τ is
this basic time, which in the above example can be thought of as the time of emission of
a signal, and the Einstein time, entering on a dynamical level, as the time detected in the
frame F’. The theory therefore has explicitly a universal time that can be identified with
Newton’s time, a postulate of the theory. In the classical theory, there is therefore (for
an N body system) an 8N dimensional phase space, with Hamilton equations on space
and the (Einstein) time, parametrized by τ , and in the quantum theory, wave functions on
space and (Einstein) time, parametrized by τ and evolving according to a Stueckelberg-
Schrödinger equation where τ plays the role of the Schrödinger nonrelativistic t. The usual
Maxwell equations provide fields that are functions of the Einstein t, and transform co-
variantly. However, introducing gauge functions into the Stueckelberg-Schrödinger theory,
requires the introduction of a fifth potential function, i.e., a 5D electrodynamics. Horwitz
and collaborators have shown that there is a possibility that the nonlinear Lorentz-Dirac
equations associated with this 5D electrodynamics induces a chaotic motion of the classi-
cal relativistic charged particle that may, on the average, stabilize its motion, and solve
the well-known problem of the instability of the Abraham-Lorentz-Dirac equation. This
quesion is under active investigation,

Horwitz and his doctoral student, R. Arshansky, were able to understand the famous
Newton-Wigner localization question, and the Landau-Peierls construction in this frame-
work. They also solved completely the quantum relativistic Kepler (Coulomb potential)
problem in a manifestly covariant form, and found results coinciding with the Schrödinger
spectrum. Its consequences for calculations such as the anomalous moment of the electron,
self-interaction, and other properties of relativistic dynamical systems are under study.

In 1976 Horwitz and Yitzhak Rabin (now department chairman at Bar Ilan University)
predicted, due to the coherence of the covariant wave function in space and time, an
interference effect in time. To see this effect, due to the smallness of Planck’s constant and
the largeness of the velocity of light, frequencies of the order of a million million Herz or
higher had to be used. An experiment was done at Max Planck Institute by Lindner et al

about a year and a half ago, and the interference effect was found. This result is consistent
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with the interpretation, pointed out above, of the Einstein time as a dynaical variable.
To understand the effect, it may suffice to describe the experiment. One and a half

waves of laser light (about 850 nm) was directed toward Argon gas. Two positive pulses,
one after the other, could cause an electron to be emitted at an earlier or later time. Just as
in the space interference efffect, where an electron may pass through one slit or another, the
two possibilities of emission interfered with each other, and instead of seeing two pulses at
the detector, there was a wave of interference over time, a time signal (like music). One of
the experimentalists used the standard non-relativistic Schrödinger equation to account for
the result. It is easy to show that numerically, one can find a reasonable approximation,
but the calculation apprears to be not correct. The nonrelativistic theory cannot have
coherence in time in quantum theory (e.g., the books of G. Ludwig, “Foundations of
Quantum Mechanics I, II” Springer-Verlag, New York, (1983, 1985). Horwitz [L. Horwitz,
Phys. Lett. A 355 1, (2006)] explained this point, and why even numerically, without
regard to the interdiction on this construction, the result could only be approximate and
becomes worse as one look at further away components of the pattern. In this paper, he
calculated the result using the covariant theory, and in a very simple way, found a result
that agreed with the experiment.

This result appears to be an important verification of the covariant form of the quan-
tum theory. As the experimentalists asserted, this new technique makes possible new
probes into the structure of matter, both for chemical structure as well as the physical
possibility of new methods of communication.

6. Hamiltonian chaos

In a somewhat different direction, Horwitz and collaborators [Lawrence Horwitz, Y.
Ben Zion, M. Lewkowicz, M. Schiffer and J. Levitan, Phys. Rev. Lett. 98 234301 (2007)]
found a way to imbed classical nonrelativistic Hamiltonian motion (with potential model
for interaction) into a Riemannian geometrical framework. This was done by using an
equivalence with an (auxiliary) Hamiltonian with conformal metric, inducing directly a
Riemannian geometry, and then transforming back to a covariant form of the Hamilton
orbits. The connection form induced under this transformation has torsion, but the torsion
term cancels out along geodesics. [It is possible that the motion of a tensor particle (such
as a particle with spin) would be sensitive to this torsion effect, and these ideas are under
investigation.] The resulting calculation of geodesic instability has proven to be remarkably
effective in predicting chaotic behavior for a wide class of potential models. The use of the
conformal embedding is currently under investigation, by Horwitz and collaborators, in
applications in general relativity, such as Bekenstein’s approach to Milgrom’s modification
of Newtonian dynamics.
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